Loss of ladder line: copper vs CCS (DXE-LL300-1C) – KN5L’s measurement 11/2020

DXE sell a nominal 300Ω ladder line, DX Engineering 300-ohm Ladder Line DXE-LL300-1C, and to their credit they give measured matched line loss (MLL) figures.

Loss of ladder line: copper vs CCS (DXE-LL300-1C) – revised for 25/07/2018 datasheet was a revision of an earlier article based on an updated datasheet from DXE. I noted that the specification data had artifacts that one would not expect of such a line, and I questioned whether the datasheet was credible.

John, KN5L, recently purchased, measured and published measurements of a 10.06m (33′) section of new DXE-LL300-1C which provide an independent dataset that might cast some light on the matter.

The chart above plots:

  • DXE’s datasheet MLL figures (converted to dB/m);
  • MLL calculated from KN5L’s S11 open and shorted measurements; and
  • theoretical MLL for round copper conductors of the same gauge as specified for the LL300 (dielectric loss is assumed insignificant).

Continue reading Loss of ladder line: copper vs CCS (DXE-LL300-1C) – KN5L’s measurement 11/2020

A low cost two wire transmission line using high strength aluminium MIG wire and agricultural trellis clips

This article documents a weather test on a trial section of two wire line using:

  • 1.6mm 5356 Aluminium MIG wire;
  • agricultural clips (Trellis Clips, Rose Clips) found on eBAY.

Construction

Above is a pic of the Rose Clip as a line insulator / support. The clips are pretty flimsy but pretty cheap. They click onto the 1.6mm diameter wire reasonably firmly. Continue reading A low cost two wire transmission line using high strength aluminium MIG wire and agricultural trellis clips

RG6/U with CCS centre conductor – shielded twin study – why is it so lossy?

RG6/U with CCS centre conductor – shielded twin study discussed a synthesised synthesised shielded twin instead of ordinary two wire line for an example HF multiband antenna.

The original scenario then is the very popular 132′ multi band dipole:

  • the famous 40m (132′) centre fed dipole;
  • 20m of feed line being parallel RG6/U CCS quad shield with shields bonded at both ends;
  • 7MHz where we will assume dipole feed point impedance is ~2000+j0Ω (a lowish estimate, it could be double that depending on height).

We will consider the system balanced and only deal with differential currents, and matched line loss is based on measurement of a specific sample of line (RG6/U with CCS centre conductor at HF).

This article will calculate the same scenario with three feed line variants:

  • 150Ω twin line with the same CCS conductors as the RG6;
  • 600Ω twin line withthe  same CCS conductors as the RG6 (ie the spacing is increased to increase Zo); and
  • 600Ω twin line using 2mm HDC.

The loss under mismatch depends not only on the transmission line characteristics and length, but also on the load and the current and voltage distribution.

Above the 150Ω twin line with same CCS conductors as the RG6 has loss almost identical to the synthesised twin shielded in the original article. Almost all of the resistance in the coax is in the CCS centre conductor, so I assume that the loss in the twin CCS is approximately equal to that of the synthesised twin. Dielectric loss is less than 1% and can be ignored. Continue reading RG6/U with CCS centre conductor – shielded twin study – why is it so lossy?

nanoVNA – evaluation of a voltage balun – RAK BL-50A

In this article, I will outline an evaluation of a ‘classic’ voltage balun, the 1:1 RAK BL-50A voltage balun, specified for 1.8-30MHz.

These were very popular at one time, but good voltage baluns achieve good current balance ONLY on very symmetric loads and so are not well suited to most wire antennas.

Above is a pic of the balun with load on test. It is not the greatest test fixture, but good enough to evaluate this balun over HF.

Mine has survived, but many users report the moulding cracking and rusted  / loose terminal screws, and signs of internal cracks in the ferrite ring.

Continue reading nanoVNA – evaluation of a voltage balun – RAK BL-50A

Loss of ladder line: copper vs CCS (DXE-LL300-1C) – revised for 25/07/2018 datasheet

DXE sell a nominal 300Ω ladder line, DX Engineering 300-ohm Ladder Line DXE-LL300-1C, and to their credit they give measured matched line loss (MLL) figures.

This article revises Loss of ladder line: copper vs CCS (DXE-LL300-1C) for revised published datasheet MLL figures with internal PDF date of 25/07/2018.

Let’s start by assuming that the new offered data is credible, let’s take it at face value.

The line is described as 19 strand #18 (1mm) CCS and the line has velocity factor (vf) 0.88 and Zo of 272Ω.

Let us calculate using TWLLC the loss at 2MHz of a similar line but using pure solid copper conductor with same conductor diameter, vf and Zo. We will assume dielectric loss is negligible at 2MHz Continue reading Loss of ladder line: copper vs CCS (DXE-LL300-1C) – revised for 25/07/2018 datasheet

nanoVNA – evaluation of a voltage balun – W2AU 1:1

In this article, I will outline an evaluation of a ‘classic’ voltage balun, the 1:1 W2AU voltage balun, specified for 1.8-30MHz.

These were very popular at one time, but good voltage baluns achieve good current balance ONLY on very symmetric loads and so are not well suited to most wire antennas.

Above is W2AU’s illustration of the internals.

Mine barely saw service before it became obvious that it had an intermittent connection to the inner pin of the coax connector. That turned out to be a poor soldered joint, a problem that is apparently quite common and perhaps the result of not properly removing the wire enamel before soldering.

Having cut the enclosure to get at the innards and fix it (they were not intended to be repaired), I rebuilt it in a similar enclosure made from plumbing PVC pipe and caps, and took the opportunity to fit some different output terminals and an N type coax connector.

W2auBalun01

Above is the rebuilt balun which since that day has been reserved for test kit for evaluating the performance of a voltage balun in some scenario or another. Continue reading nanoVNA – evaluation of a voltage balun – W2AU 1:1

what-exactly-happens-to-the-signals-hitting-a-common-mode-choke?

An image from what-exactly-happens-to-the-signals-hitting-a-common-mode-choke doesn’t quite look right.

In respect of the first part, inductance \(L=\frac{\phi(i)}{i}\) so if the windings are equal, half the total current flows in each winding and each contributes flux due to i/2, total current is i, total flux is twice that due to i/2, so the inductance of the parallel equal windings is the same as if i flowed in a single winding, ie L of the combination is the same as the inductance of each of the equal windings alone. Continue reading what-exactly-happens-to-the-signals-hitting-a-common-mode-choke?

Some pretty woolly thinking about the operation of common mode chokes in antenna systems

One of the notions one often sees discussed is that at RF, some device inserted in a relatively long (meaning wrt wavelength) conducting path is likely to lead to interruption of the circuit in the way that a switch might in a DC circuit. Another variant is one where current flows on one side of the device and not the other… a fence as explained in the following text by one poster.

With a current balun or CM choke, it is the reactance (inductance) that is mostly responsible for the balun action. In the case of the choke balun, beads installed along the coax at the feed with 31 or 43 material, they form a reflective ‘filter’. There is some absorption, but most of the action is due to reflection from the inductive reactance they form installed on a conductor. As such, they form a high-Z isolation point between the feeder and the antenna center, assuming they are installed at the feedpoint of the doublet. In the case of the CM choke, the common mode currents are reflected by the inductive reactance of the windings as with the current balun and the balance of current between the two conductors is forced through induced opposing magnetic currents within the cone. This is the reason I prefer the CM choke for the purpose. In either case, the common mode current is reflected to a large extent by the inductive reactance back where it originated. Installation of a balun at the feedpoint of a doublet does not make the CM currents go away, it just establishes a ‘fence’ for those currents between non-antenna associated currents (on the outside of the feedline) and the radiating structure.

Let us explore some NEC models with three ‘devices’ to attempt to confine current to the lower conductor:

  • a gap;
  • a large pure inductive reactance;
  • a large pure resistance.

Gap

The first is at 10MHz a vertical conductor over a perfectly conducting earth, and space 0.1m above it, another vertical conductor.

Above is the current distribution showing phase and amplitude, the gap is at one third the height. It is not totally clear from the 2D rendering of a 3D characteristic, but the phase in the upper two thirds is opposite to the phase in the lower third, and this is by virtue of the lengths which are approximately a quarter and half wavelength. Continue reading Some pretty woolly thinking about the operation of common mode chokes in antenna systems

Active monopole + RTL SDR + RPi Spyserver experiment

A brief experiment was conducted of a remote HF receiver using:

  • 1m active monopole;
  • RTL-2832U v3 SDR dongle;
  • RPi 3B+ running Spyserver; and
  • SdrSharp client.

Above is the active whip antenna. Not optimal mounting, but as you can see from the clamps, a temporary mount but one that does not confuse results with feed line common mode contribution. Continue reading Active monopole + RTL SDR + RPi Spyserver experiment

A 1:1 RF transformer for measurements – based on noelec 1:9 balun assembly

The Noelec 1:9 balun (or perhaps Chinese knock off) is available quite cheaply on eBay and provides a good hardware base for a 1:1 version.

Above is a modified device with the original transformer replaced with a Macom ETC1-1T-2TR 1:1 transformer. The replacement is not exactly the same pads, but it is sufficiently compatible to install easily.

The most notable departure from ideal of these small transformers is leakage inductance of 50nH give or take. Continue reading A 1:1 RF transformer for measurements – based on noelec 1:9 balun assembly