Exploiting your antenna analyser #30

Quality of termination used for calibration

Some of us use a resistor as a load for testing a transmitter or other RF source. In this application they are often rated for quite high power and commonly called a dummy load. In that role, they usually do not need to be of highly accurate impedance, and commercial dummy loads will often be specified to have maximum VSWR in the range 1.1 to 1.5 (Return Loss (RL) from 26 to 14dB) over a specified frequency range.

We also use a known value resistor for measurement purposes, and often relatively low power rating but higher impedance accuracy. They are commonly caused terminations, and will often be specified to have maximum VSWR in the range 1.01 to 1.1 (RL from 46 to 26dB) over a specified frequency range.

Return Loss

It is more logical to discuss this subject in terms of Return Loss rather than VSWR.

Return Loss is defined as the ratio of incident to reflected power at a reference plane of a network. It is expressed in dB as 20*log(Vfwd/Vref). Continue reading Exploiting your antenna analyser #30

EFHW exploration – Part 2: practical examples of EFHW

EFHW exploration – Part 1: basic EFHW explored the basic half wave dipole driven by an integral source as a means of understanding that component of a bigger antenna system.

The EFHW can be deployed in a miriad of topologies, this article goes on to explore three popular practical means of feeding such a dipole.

The models are of the antenna system over average ground, and do not include conductive support structures (eg towers / masts), other conductors (power lines, antennas, conductors on or in buildings). Note that the model results apply to the exact scenarios, and extrapolation to other scenarios may introduce significant error.

End Fed Zepp with current drive

A very old end fed antenna system is the End Fed Zepp. In this example, a half wave dipole at λ/4 height is driven with a λ/4 600Ω vertical feed line driven by a balanced current source (ie an effective current balun).

Above is a plot of the current magnitudes. The currents on the feed line conductor are almost exactly antiphase, and the plot of magnitude shows that they are equal at the bottom but not so at the top. The difference between the currents is the total common mode current, and it is maximum at the top and tapers down to zero at the bottom. Icm at the top is about one third of the current at the middle of the dipole. Continue reading EFHW exploration – Part 2: practical examples of EFHW

EFHW exploration – Part 1: basic EFHW

The so-called End Fed Half Wave (EFHW) has become very fashionable amongst hams. The idea of end feeding a half wave antenna is hardly new, and there is widespread use of the broad concept… but from online ham discussion, it can be observed that the things are not well understood and indeed, there is magic about them.

A simple model of a simple antenna

This article presents some NEC-4.2 model results for a 7MHz λ/2 horizontal 2mm copper wire at height of λ/4 above average ground.

The model is impractical in a sense that it does not include unavoidable by-products of a practical way to supply RF power to the antenna, but it is useful in providing insight into the basic antenna.

The NEC model has 200 segments, and varying the feed segment gives insight to what happens to feed point impedance.

Above, it can be seen that as the wire is fed closer to the end (segment 1), feed point Z includes a rapidly increase capacitive reactance. Continue reading EFHW exploration – Part 1: basic EFHW

W0SJ matching transformer for an EFLW (Laird 28B1540-000)

QST publishes a design by W0SJ for a nominal 50:450Ω EFLW matching device from 160-10m using the following circuit.

The article is ‘in-brief’ as technical stuff that will not interest most hams is published privately on a members-only page. This article is based on the information in the QST article alone (ie not on the private members only supplementary information).

The core has a modest price in North America, but shipping to other parts of the world may make it very expensive… IOW unobtainium to most parts of the world.

Above is the published InsertionLoss. The article states that they were half the value obtained in a back to back measurement, and it should be noted that is a compromised measurement, and secondly that InsertionLoss comprises two components, (dissipative) Loss and MismatchLoss. Continue reading W0SJ matching transformer for an EFLW (Laird 28B1540-000)

AIM 916 produces internally inconsistent results

 

AIMuhf

AIM915a was recently pulled from the distribution site and replaced by a new release, AIM916.

AIM916 chokes on some calibration files created with earlier versions, so again historical scan data is rendered worthless. Note the illogical diagnostic message… typical AIM quality.

I cannot recall ever finding a new release that did not have significant defects, commonly inconsistency between displayed values. In the common theme of one step forward, two steps backwards, this version has defects that were not present in AIM910B.

This problem existed in AIM915a, it persists in AIM916.

Let’s review the internal consistency of this part of the display screen.

Most of the values given above are calculated from a single measurement value, and should be internally consistent. That measurement value is translated to different quantities, many based on the stated Zref (50Ω in this case). Continue reading AIM 916 produces internally inconsistent results

Elecraft CP-1 directional coupler – magnetics review

Elecraft produces a directional coupler that may interest QRP aficionados. It comes with instructions for 20dB and 30dB coupling factors rated at 25 and 250W respectively from 1 to 30MHz.

This article reviews the magnetics design of the -20dB / 25W coupler.

The coupler uses a type of Sontheimer coupler (Sontheimer 1966) and these are commonly poorly designed. The first question is whether the magnetising impedance of T2 which appears in shunt with the load is sufficiently high to not give rise to poor insertion VSWR. Continue reading Elecraft CP-1 directional coupler – magnetics review

AIM 915a produces internally inconsistent results

 

AIMuhf

AIM915 was recently pulled from the distribution site and replaced by a new release, AIM915a.

I cannot recall ever finding a new release that did not have significant defects, commonly inconsistency between displayed values. In the common theme of one step forward, two steps backwards, this version has defects that were not present in AIM910B.

This problem existed in AIM915, it persists in AIM915a.

Let’s review the internal consistency of this part of the display screen.

Most of the values given above are calculated from a single measurement value, and should be internally consistent. That measurement value is translated to different quantities, many based on the stated Zref (50Ω in this case). Continue reading AIM 915a produces internally inconsistent results

AIM 915 produces internally inconsistent results

 

AIMuhf

AIM914 was recently pulled from the distribution site and replaced by a new release, AIM915.

I cannot recall ever finding a new release that did not have significant defects, commonly inconsistency between displayed values. In the common theme of one step forward, two steps backwards, this version has defects that were not present in AIM910B.

Let’s review the internal consistency of this part of the display screen.

Most of the values given above are calculated from a single measurement value, and should be internally consistent. That measurement value is translated to different quantities, many based on the stated Zref (50Ω in this case). Continue reading AIM 915 produces internally inconsistent results

WW1WW’s matching transformer for an EFHW

At PD7MAA’s BN43-202 matching transformer for an EFHW I gave an estimate of the core loss in PD7MAA’s transformer.

An online expert questioned the analysis and later measurements, and proposed his own transformer design as evidence.

Notably, his transformer uses #61 material and a larger binocular core, a Fair-rite 2861006802 with 2t for a nominal 50Ω primary, giving loss measurements at 7MHz of 0.08dB. Note that the confidence limits of that loss measurement because of the way in which it was obtained (eg a 1% error in the 1120Ω load resistor contributes 0.043dB error to the result), but the measurements do suggest that the loss is probably very low.

Though the loss is low and Return Loss is high at 7MHz, the limits for ReturnLoss>14dB (VSWR<1.5) is 5-18MHz. With compensation, that range may be changed.

Prediction

Lets apply the method laid out at PD7MAA’s BN43-202 matching transformer for an EFHW.

The best Fair-rite data I can find quickly is a chart of the impedance of a one turn winding.

Scaling from this graph, Xs is close of 35Ω at 7MHz, so lets used that to derive some basic parameters for the core. Continue reading WW1WW’s matching transformer for an EFHW