Yet another ferrite toroid calculator – but is it any good?

In a recent online thread, a ‘new’ online calculator was touted:  https://miguelvaca.github.io/vk3cpu/toroid.html .

References without any qualification surely imply a recommendation.

In the same thread, Roger Need compared his measurement of a FT50-43 with Calculate ferrite cored inductor (from Al) (one of a set of related calculators), and Ferrite permeability interpolations.

Above, his calculation reconciles well with measurement at 3.6MHz. Continue reading Yet another ferrite toroid calculator – but is it any good?

Feasibility study – loop in ground for rx only on low HF – signal / noise degradation (SND) – more detail

Feasibility study – loop in ground for rx only on low HF – signal / noise degradation (SND) gave the following graph.

This article explains a little of the detail behind the graph. Continue reading Feasibility study – loop in ground for rx only on low HF – signal / noise degradation (SND) – more detail

Feasibility study – loop in ground for rx only on low HF – signal / noise degradation (SND)

Feasibility study – loop in ground for rx only on low HF laid out an initial design concept. This article sets out expected signal / noise degradation in a typical installation.

3.5MHz

Let’s take ambient noise as Rural precinct in ITU-P.372-14.

An NEC-4.2 model of the 3m a side LiG gives average gain -37.18dBi. An allowance of 2.7dB of feed loss covers actual feed line loss and mismatch loss. Continue reading Feasibility study – loop in ground for rx only on low HF – signal / noise degradation (SND)

Signal to noise degradation (SND) concept

The nature of radio signals received off-air is that they are accompanied by undesired noise.

A key measure of the ability to decode a radio signal is its Signal to Noise ratio (S/N) at the demodulator (or referred to some common point).

We can speak of think of an external S/N figure as \(S/N_{ext}=10 log\frac{S_{ext}}{N_{ext}}\) in dB.

Receiver systems are not perfect, and one of the imperfections is that they contribute undesired noise. Continue reading Signal to noise degradation (SND) concept