Another small efficient matching transformer for an EFHW – 2643251002 – #4 – a paired Guanella 1:1 balun

Another small efficient matching transformer for an EFHW – 2643251002 – #2 – prototype bench measurement continued the development of a transformer design. This article presents a Guanella 1:1 (current) balun (or common mode choke) using the same type of core.

Above, the EFHW transformer prototype. Continue reading Another small efficient matching transformer for an EFHW – 2643251002 – #4 – a paired Guanella 1:1 balun

Center-Fed Dipole : elements length for a Z=200 +/- 0j ohms

A chap asked online for dimensions of a 50MHz dipole with a feed point of 200+j0 to suit 50Ω feed line and a 1:4 coax half wave balun. The “+/- 0j” is hammy Sammy talk from an ‘Extra’.

This type of balun, properly implemented, is a good voltage balun, and it is quite suited to a highly symmetric antenna.

A good voltage balun will deliver approximately equal voltages (wrt the input ground) with approximately opposite phase, irrespective of the load impedance (including symmetry).

Where the load is symmetric, we can say a good voltage balun will deliver approximately equal currents with approximately opposite phase, irrespective of the load impedance.

It is an interesting application, and contrary to the initial responses on social media, there is a simple solution.

One solution

Let’s take a half wave dipole and lengthen it a little so the feed point admittance becomes 1/200-jB (or 200 || jX). We will build an NEC model of the thing in free space.

Above is a sweep of the dipole which is 3.14m long (we will talk about how we came to that length later), and the Smith chart prime centre is 200+j0… the target impedance. Continue reading Center-Fed Dipole : elements length for a Z=200 +/- 0j ohms

Another small efficient matching transformer for an EFHW – 2643251002 – #3 – thermal measurement

The article
Another small efficient matching transformer for an EFHW – 2643251002 – #2 – prototype bench measurement continued the development of a transformer design. This article presents thermal measurements.


Losses were predicted from a model as follows. Continue reading Another small efficient matching transformer for an EFHW – 2643251002 – #3 – thermal measurement

Sontheimer coupler – transformer issues – an alternative design – FT37-43

Sontheimer coupler – transformer issues discussed problems with the Sontheimer coupler in a recently published QRP transceiver ((tr)uSDX / trusdx), suggesting that the core loss in transformer T2 was excessive.

This article presents an alternative design for the transformer for a coupler for a 5W transmitter.

The above circuit is from (Grebenkemper 1987) and is an embodiment of (Sontheimer 1966). In their various forms, this family of couplers have one or sometimes two transformers with their primary in shunt with the through line. Let’s focus on transformer T2. It samples the though line RF voltage, and its magnetising impedance and transformed load appear in shunt with the through line. T2’s load is usually insignificant, but its magnetising impedance is significant and is often a cause of: Continue reading Sontheimer coupler – transformer issues – an alternative design – FT37-43

End Fed Half Wave matching transformer – 80-20m – model and measurement

Reviewing consistency of measured and model data, the first posting was based on an incorrect model parameter (aol), the article is now revised for the correct value, apologies.

End Fed Half Wave matching transformer – 80-20m described a EFHW transformer design with taps for nominal 1:36, 49, and 64 impedance ratios.

Keep in mind that this is a desk design of a transformer to come close to ideal broadband performance on a nominal 2400Ω load with low loss. Real antennas don’t offer an idealised load, but this is the first step in designing and applying a practical transformer.

The transformer comprises a 32t of 0.65mm enamelled copper winding on a Fair-rite 5943003801 core (FT240-43) ferrite core (the information is not applicable to an Amidon core), to be used as an autotransformer to step down a EFHW load impedance to around 50Ω. The winding layout is unconventional, most articles describing a similar transformer seem to have their root in a single flawed design, and they are usually published without meaningful credible measurement. Continue reading End Fed Half Wave matching transformer – 80-20m – model and measurement

Sontheimer coupler – transformer issues – an alternative design – FT23-43

Sontheimer coupler – transformer issues discussed problems with the Sontheimer coupler in a recently published QRP transceiver ((tr)uSDX / trusdx), suggesting that the core loss in transformer T2 was excessive.

This article presents an alternative design for the transformer for a coupler for a 5W transmitter.

The above circuit is from (Grebenkemper 1987) and is an embodiment of (Sontheimer 1966). In their various forms, this family of couplers have one or sometimes two transformers with their primary in shunt with the through line. Let’s focus on transformer T2. It samples the though line RF voltage, and its magnetising impedance and transformed load appear in shunt with the through line. T2’s load is usually insignificant, but its magnetising impedance is significant and is often a cause of: Continue reading Sontheimer coupler – transformer issues – an alternative design – FT23-43

Measuring modulation index of an amplitude modulated wave with an oscilloscope

A oscilloscope can be used to measure the modulation index of an amplitude modulated wave. Modulation index is a value from 0 to `1, but is often expressed as a percentage.

The discussion here assumes symmetric modulation, it does not apply to super modulation schemes or any other schemes that are asymmetric.

Envelope method

If an oscilloscope is used to display the modulation envelope (as it is known), modulation index can be calculated from measured values of the peak voltage at the crest and valley of the envelope waveform.

Modulation index can be calculated as \(m=\frac{b-a}{b+a}\). Continue reading Measuring modulation index of an amplitude modulated wave with an oscilloscope

U.FL connectors – hints

This article expands on discussion at nanoVNA – that demo board and its U.FL connectors.

Before looking at the specifics of the Hirose U.FL connector, clean connectors work better and last longer. That should not be a revelation.

A can of IPA cleaner and a good air puffer are invaluable for cleaning connectors. The air puffer show  has a valve in the right hand end, it doesn’t suck the dirt and solvent out of the connector and blow it back like most cheap Chinese puffers, this one was harder to find and expensive ($10!). Continue reading U.FL connectors – hints

The need for infinite preamplifier gain?

A recent posting on social media kicked off some discussion about infinite gain preamplifiers, mostly in the context of an unloaded very short vertical.

Over the past couple of years I’ve had a number of comments and questions about active antennas, instigated by my ARRL book, Receiving Antennas for the Radio Amateur.

The “main ingredient” of an active antenna (in this discussion, we’ll center on the very short WHIP), is the preamplifier, which generally takes the form of an FET source follower.

A true source follower (or ideal cathode follower) is theoretically capable of INFINITE power gain). In practice, modern FET input op-amps have an input resistance on the order of a teraohm or so, and an input capacitance of about a picofarad.

Although we can’t QUITE get to infinite power gain with a real FET (or FET input op amp), we can get EXTREMELY high power gains. Assuming an output (source) resistance of 1Kohm and an input resistance of 1 teraohm, a voltage follower will have a power gain of 10^21:1…..not too shabby. (This is assuming essentially a DC signal, where the input parallel capacitance can be ignored).

At this point in time, there has been no mention of noise… but it is key to the problem. Continue reading The need for infinite preamplifier gain?