Reconciliation of transmitter power, EIRP, received signal strength, antenna factor, ground wave propagation etc @ 576kHz

This article reconciles measurements with path predictions for a MW AM transmitter on 576kHz. The techniques used could be used to validate / assess the performance of a transmitter.

Source

The source is a MF AM transmitter on 576kHz located about 74km distant.

Above is the station data from the ACMA licence register. Conveniently it gives the EIRP as 132kW, we would expect something a little less than 150kW from the nominal 50kW transmitter, system efficiency calculates to 80%.

The EIRP would have been calculated from a set of field strength measurements at the time of commissioning. Continue reading Reconciliation of transmitter power, EIRP, received signal strength, antenna factor, ground wave propagation etc @ 576kHz

Does RBN give a reliable metric for comparing antennas?

I see that lots of hams depend on HF RBN to compare to antennas, or to compare before and after a change.

Experience says that A/B comparisons on HF are subject to variation in Ionospheric propagation paths, and that variation can be wide in range and rapid.

An example

Above is a plot of signal strength of an 80m A1 Morse (CW) beacon measured in 20Hz bandwidth over 15min snapshot (a terrestrial path of length 105km). Continue reading Does RBN give a reliable metric for comparing antennas?

NanoVNA setup for shunt matching task – scripting the setup

NanoVNA setup for common antenna system measurement tasks showed a display configuration better suited to those tasks.

It is tedious to set the display up using the device menu, and setups may vary with different NanoVNA hardware and firmware.

The firmware I used was NanoVNA.H.v1.2.20 which allows some setup using serial port commands. This article describes the technique.

The command used is the trace command

trace {0|1|2|3|all} [logmag|phase|delay|smith|polar|linear|swr|real|imag|r|x|z|zp|g|b|y|rp|xp|sc|sl|pc|pl|q|rser|xser|zser|rsh|xsh|zsh|q21] [src]
trace {0|1|2|3} [lin|log|ri|rx|rlc|gb|glc|rpxp|rplc|rxsh|rxser]
trace {0|1|2|3} {scale|refpos} {value}

For this exercise, I used Teraterm5 which allows setting delays after each character and after each line so that the NanoVNA is not overrun.

Above, the Teraterm serial port setup. Continue reading NanoVNA setup for shunt matching task – scripting the setup

NanoVNA setup for shunt match tasks

NanoVNA setup for common antenna system measurement tasks offered an example NanoVNA configuration well suited to the most common antenna system tuning / adjustment tasks.

This article looks at a different case, a configuration to support measurement, design, and implementation / tuning of a shunt match.

A shunt match scheme is one where the antenna with low feed point R at resonance is detuned to add some capacitive or inductive reactance, which is then offset with a shunt reactive element of the opposite sign, for the outcome of a load impedance of 50j0Ω.

VNA Calibration

The VNA is OSL calibrated at its Port 1 jack.

Measurements in this example will be made through a 50Ω coax tail of about 1m, so we need to adjust the reference plane to the feed point. In this example, the native reference plane is the NanoVNA jack, and e-delay is used to approximately offset the reference plane. It is a good approximation in this case.

You could instead calibrate the fixture to include the coax tail, but you will need appropriate cal parts… and if they are poor, the previous method may be more accurate.

Above, a measurement is made of the coax tail with an open circuit (OC) at the far end, and e-delay iteratively adjusted so that the Smith chart plot is a dot at R=infinity+j0, the right hand end of the Z=0 axis above. Continue reading NanoVNA setup for shunt match tasks

s11 and phase wrapping

Fazed by s11 phase magic? mentioned the effect of phase wrapping on s11 phase plots, and the apparent discontinuity that is actually an artifact of the wrapping process.

Phase wrapping is the presentation of phase values to always appear in the range typically -180° to 180° (or sometimes 0° to 360°).

F1AMM published an example .s1p file of an antenna system measurement. Let’s use that as a real world example to demonstrate the effect of phase wrapping.

Above is a Smith chart presentation of the data. You might interpret the curve near the marker to show a sudden flip from -ve phase to +ve phase… but is phase discontinuous? Continue reading s11 and phase wrapping

NanoVNA setup for common antenna system measurement tasks – scripting the setup

NanoVNA setup for common antenna system measurement tasks showed a display configuration better suited to those tasks.

It is tedious to set the display up using the device menu, and setups may vary with different NanoVNA hardware and firmware.

The firmware I used was NanoVNA.H.v1.2.20 which allows some setup using serial port commands. This article describes the technique.

The command used is the trace command

trace {0|1|2|3|all} [logmag|phase|delay|smith|polar|linear|swr|real|imag|r|x|z|zp|g|b|y|rp|xp|sc|sl|pc|pl|q|rser|xser|zser|rsh|xsh|zsh|q21] [src]
trace {0|1|2|3} [lin|log|ri|rx|rlc|gb|glc|rpxp|rplc|rxsh|rxser]
trace {0|1|2|3} {scale|refpos} {value}

For this exercise, I used Teraterm5 which allows setting delays after each character and after each line so that the NanoVNA is not overrun.

Above, the Teraterm serial port setup. Continue reading NanoVNA setup for common antenna system measurement tasks – scripting the setup

NanoVNA setup for common antenna system measurement tasks

A common task is an overall assessment of an antenna system, this article looks at NanoVNA display configuration that will often suit stand alone:

  1. measurement at any point on the feed line; and
  2. measurement with the reference plane, either by direct connection, fixture calibration or approximate calibration using e-delay.

Caution

When measuring an antenna system with the NanoVNA:

  • drain any static charge at the coax connector before offering the connector up to the NanoVNA; and
  • do not leave the instrument attached any longer than necessary to make the measurements.

Case 1: measurement at any point on the feed line

Since the phase relationship of the reflected wave at the point of observation relative to that at the feed point is unknown the only meaningful statistics are those based on the magnitude of s11 (|s11|), |s11|, ReturnLoss, and VSWR.

My NanovVNA does not offer a ReturnLoss plot natively, you could use |s11|dB remembering to multiply all values by -1 (ie ReturnLossdB=-|s11|dB.

Otherwise, the VSWR plot is most useful.

A Smith chart plot of s11 is sort of useful, but there is an unknown rotation from the feed point.

Since they are of no real value, you could disable traces 1, 2 and 3 to make the display less cluttered.

Case 2: measurement with the reference plane at the feed point, either by direct connection, fixture calibration or approximate calibration using e-delay

In this case, the phase of s11 is meaningful which means:

  • the Smith chart plot is properly presented wrt the chosen reference plane; and
  • R and X components of impedance can be properly calculated and presented.

An example

Let’s look at an example antenna sweep where the NanoVNA measurements are wrt the feed point (e-delay has been used as an approximate correction for a short feed line tail). The examples are from NanoVNA.H.v1.2.20 firmware.

Above is a screen capture, the colours are inverted for printing. Continue reading NanoVNA setup for common antenna system measurement tasks

Fazed by s11 phase magic?

The widespread takeup of the NanoVNA has given new life to the resonance myth. Heard on air some years ago was this enlightenment:

anyone who has blown across the top of an empty milk bottle and observed resonance knows that you really need a resonant antenna to fairly suck the power out of the transmitter.

Phase of s11

Let’s divert to the new pitch that phase of s11 equal to 0° is a key optimisation target.

Adapted to the NanoVNA is this capture from an instructional video:

The voice over is explaining that the (load) voltage and current are in phase at the cursor in this phase of s11 chart (check the axis title). The discussion asserts that phase=0° is goodness. Continue reading Fazed by s11 phase magic?

Battery testing – BN-V12U

The BN-V12U is a NiMh battery used in JVC video camera / recorders in the 1990s. It was used in a lot of competitors products, and found its way into other applications. In my case, it is used in a Leica T107 theodolite.

This article documents initial tests on two new after market Chinese made batteries purchased on Aliexpress 12/2023 for about $34 for two, incl shipping. These have a label rating them at 2.1Ah. Continue reading Battery testing – BN-V12U

Radiosonde propagation – is aircraft enhancement significant?

Some radiosonde signals are successfully decoded at distances well in excess of the specified range for the radiosonde.

Experience reported here relates to Vaisala RS41-SGM radiosondes which are specified at 60mW max transmitter output and range up to 350km.

Free space model of the radio path

Whilst the path is over land, the radio path at high altitudes approaches a free space path, albeit with some ground reflection effects at the receiver.

The transmit antenna is probably close to a vertical dipole in performance, lets assume that it has a gain of 2.13dBi in the path direction.

Receive antennas will commonly be omni directional, and fairly low directivity, so lets just assume rx antenna system gain 0dBi.

If the path was free space, the rx field strength would be 13.8dBµV/m, tx power -115.5dBm. This model ignores ground reflection gain and losses, but it is in the ball park. Continue reading Radiosonde propagation – is aircraft enhancement significant?