AE7PD’s transmitting loop measurements

AE7PD documented his measurements of a 3.16m perimeter circular transmitting loop, 1.8m centre height above ground, that he made using 16mm copper tube and a split stator tuning capacitor:

AE7PD gives the radiation efficiency on 20m as 30.5% or -5.2dB.

I present here an alternative analysis of the antenna as measured on 20m.

Assuming the measurements were made with the antenna clear of disturbing conductors etc, and that 5/8″ tube means 16mm OD.

The key measurements were:

  • centre frequency 14.165MHz, VSWRmin=1.0;
  • VSWR=2.62 bandwidth 22kHz.

A NEC-4.2 model of the antenna at 14MHz was built and calibrated to the measured half power bandwidth (22kHz). Model assumptions include:

  • ‘average’ ground (0.005,13);
  • Q of the tuning capacitor = 2000;
  • conductivity of the loop conductor adjusted to calibrate the model half power bandwidth to measurement.

Note that the model may depart from the actual test scenario in other ways.

Above is the VSWR scan of the calibrated model, the load is matched at centre frequency and half power bandwidth is taken as the range between ReturnLoss=6.99dB points. Continue reading AE7PD’s transmitting loop measurements

Findling & Siwiak 2012 measurements of an Alexloop – discussion

I mentioned in Findling & Siwiak 2012 measurements of an Alexloop issues with their efficiency calculation.

Above is an extract from (Findling & Siwiak 2012).

(Siwiak & Quick 2018) give an equivalent circuit of lossless loop structure in free space.

When tuned to resonance, the response is simply that of a series RLC circuit where R=Rr (the radiation resistance) which is dependent on frequency, but varies very slowly with frequency compared to the net reactance X.

Above is a NEC simulation of such a loop. Continue reading Findling & Siwiak 2012 measurements of an Alexloop – discussion

G3CWI 2018 measurements of an Alexloop Walkham

Richard, G3CWI, measured the impedance and bandwidth of a Alexloop Walkham, a popular small transmitting loop (STL). The antenna was situated in the clear at 1.65m centre height above natural ground.

The key measurements were:

  • centre frequency 7.014MHz, |Z|=51Ω, VSWR=1.1;
  • VSWR=3 bandwidth 16.2kHz.

The step size of the analyser prevented measurement exactly at resonance, but R changes very closely with frequency near resonance so we can estimate it quite well. The above figures can be used to find R close to resonance.

Within the limits of measurement error, we can say that R at resonance should be very close to 51Ω, and VSWRmin close to 1.02. Continue reading G3CWI 2018 measurements of an Alexloop Walkham

Findling & Siwiak 2012 measurements of an Alexloop

(Findling, A & Siwiak 2012) documented measurements they made of a popular small transmitting loop (STL), an Alexloop Walkham.

Now Alexloops seem to have undergone some evolution, and there does not seem to be a clear list of model names or numbers with features or specifications, so to some extent the antenna is a little non descript.

The article did not document the environment of the test antenna, but Findling explained in correspondence that it was relatively clear of conducting structures and about 1.2m above natural ground.

A NEC-4.2 model of the antenna at 7MHz was built and calibrated to their measured half power bandwidth (19kHz). Model assumptions include:

  • ‘average’ ground (0.005,13);
  • Q of the tuning capacitor = 1000;
  • conductivity of the loop conductor adjusted to calibrate the model half power bandwidth to measurement.

Note that the model may depart from the actual test scenario in other ways, it is challenging to glean all the data that one would like from the article.

Above is an extract from (Findling, A & Siwiak 2012).

Above is the VSWR scan of the calibrated model, the load is matched at centre frequency and half power bandwidth is taken as the range between ReturnLoss=6.99dB points. Continue reading Findling & Siwiak 2012 measurements of an Alexloop

Single turn coaxial loop resonator analysis

Recent discussion online of a purported commercial HF small transmitting loop (STL) was challenged in analysing the structure, questioning whether such a connection was ‘correct’.

The STL used a main loop resonator and a separate small auxiliary loop for the 50Ω feed, a very common arrangement.

The main loop is a coaxial cable with, in this case, a tuning capacitor inserted between the inner conductors at each end. Above is a diagram of the main loop. Continue reading Single turn coaxial loop resonator analysis

AIM 914 produces internally inconsistent results

 

AIMuhf

A new release, AIM914 appeared recently.

In the common theme of one step forward, two steps backwards, this version has defects that were not present in AIM910B.

Let’s review the internal consistency of this part of the display screen.

Most of the values given above are calculated from a single measurement value, and should be internally consistent. That measurement value is translated to different quantities, many based on the chosen Zref (75Ω in this case). Continue reading AIM 914 produces internally inconsistent results

Matched Line Loss of generic RG6/U Quad Shield CCS

This article documents a measurement of Matched Line Loss (MLL) of a 35m test section of generic RG6/U Quad Shield CCS.

It has become impossible in recent years to buy low cost RG6/U with solid centre conductor locally, and the imported product with solid copper conductor is prohibitively expensive (~$6/m as against $0.35/m for the CCS).

The CCS cable does have near copper like performance at UHF and above, but what is its behavior at HF?

Above is calculated MLL from a S11 scan of the test section with S/C and O/C termination. There is a little ripple on the response due to measurement error. The graph also has a curve fit, MLL=0.0285f^0.1506 (F in MHz). Continue reading Matched Line Loss of generic RG6/U Quad Shield CCS

Transmission line measurements – learning from failure

Introduction

A recent article questioned the accuracy of measurement of Matched Line Loss (MLL) for a modified commercial transmission line. The published results were less than half the loss of an equivalent line in air using copper conductors and lossless dielectric, when in fact there would be good reason to expect that the line modification would probably increase loss.

How do you avoid the pitfalls of using analysers and VNAs to measure line loss?

Lets walk through a simple exercise that you can try at home with a good one port analyser (or VNA). Measuring something that is totally unknown does not provide an external reference point for judging the reasonableness of the results, so will use something that is known to a fair extent,

Experiment

For this exercise, we will measure the Matched Line Loss (MLL) of a 6m length of uniform transmission line, RG58C/U cable, using an AIMUHF analyser. The AIM manual describes the method.

If you need to know the cable loss at other frequencies, enable the Return Loss display using the Setup menu and click Plot Parameters -> Return Loss and then do a regular scan of the cable over the desired frequency range with the far end of the cable open. Move the blue vertical cursor along the scan and the cable loss will be displayed on the right side of the graph for each frequency point

Note the one-way cable loss is numerically equal to one-half of the return loss. The return loss is the loss that the signal experiences in two passes, down and back along the open cable.

Our measurements will show that this is a naively simple explanation, and to take it literally as complete may lead to serious errors. Yes, it IS the equipment manual, but it is my experience that the designers of equipment, and writers of the manuals often show only a superficial knowledge of the relevant material.

Datasheet

Above is an extract of the datasheet for Belden 8262 RG58C/U type cable, our test cable should have similar characteristics. Continue reading Transmission line measurements – learning from failure

Feasibility study – loop in ground for rx only on low HF – SDR for measurement?

A series of recent articles developed a Loop In Ground antenna system design.

To test the prototype, I thought it an interesting exercise to use a low end rx only SDR for the instrumentation, providing a graphic quantitative measure of performance that is within the reach of most hams.

The first device trialled was a RTL-SDR v3 dongle with Sdrsharp (SDR#) software under windows, a very low cost option ($40). I was unable to find meaningful NF specifications or end user measurements for the thing in direct sampling mode. Continue reading Feasibility study – loop in ground for rx only on low HF – SDR for measurement?

Feasibility study – loop in ground for rx only on low HF – trial topology selection

* * * D R A F T * * * – a working document.

This article documents the selection of the trial loop in ground configuration as a development from the loop on ground antenna (KK5JY).

Baseline

The baseline is a minor variation of a design by KK5JY, a 15′ square loop 20mm above average ground, with 9:1 transformer and 50Ω load middle of one side.

Above is a plot of feed point impedance when the loop is driven. At 3.6MHz, the source impedance for a rx system is 43+j852Ω, and the mismatch loss to a 450Ω load is 11.0dB, a direct contribution to Antenna Factor (AF). Continue reading Feasibility study – loop in ground for rx only on low HF – trial topology selection