Much is written about ATU efficiency, about the need for them or not, and often in subjective terms like “lossy ATU”, and most of it lacking quantitative detail.
The little quantitative detail is almost entirely for purely resistive loads… as if that is typical of real life conditions.
The most common configuration used today is the ‘high pass T match’, but a range of other configurations are seen as being superior… though usually without quantitative evidence.
MFJ claims
More Hams use MFJ-949s than any other antenna tuner in the world! Why? Because the worlds leading antenna tuner has earned a worldwide reputation for being able to match just about anything.
… so let’s make some measurements with a reactive load on a MFJ-949E. Capacitive loads tend to be very common for antenna systems at lower HF, so let’s choose a load of 50Ω with a 100pF silver mica cap in series at 3.6MHz. The reactance of the cap is -442Ω, so the load is 50-j442Ω, and the 50Ω part is a RF power meter (RFPM1).
The test setup then is:
- a standard signal generator (SSG) on 3.6MHz with 20dB precision attenuator so that we are confident that Zs=50Ω (important to the adjustment of the ATU for maximum power as indication of 50Ω match);
- MFJ-949E;
- 100pF silver mica capacitor (low loss);
- RFPM1
The SSG was adjusted for -10dBm out directly into the RFPM1, then the ATU+cap inserted and ATU adjusted for maximum power indication. Power indicated was 1.4dB lower, so InsertionLoss and TransmissionLoss are both 1.4dB.
Above is a simulation of the T network in RFSim99, component values are adjusted for a match and inductor Q is calibrated to the measured loss of 1.4dB. Continue reading ATU efficiency