Ratings of coax antenna switches

In a recent article I discussed how InsertionLoss implies InsertionVSWR in lossless devices.

This article looks at measurements of a few antenna switches at hand.

Daiwa CS-201G II

It is difficult to find comprehensive data on the very popular Daiwa CS-201 series switches.

CS201spec

Above is the data from the packet of one of these switches, a CS-201G II. The specifications are pretty loose, and one must depend on one’s own measurements.

CS201N01

Above, the CS-201G II, a basic CS-201 series switch with N connectors, advertised as useful to 2000MHz where InsertionLoss is given as 1.2dB (or better?). If there were no TransmissionLoss in the switch, that would imply InsertionVSWR=3.6, but there is probably some significant TransmissionLoss and InsertionVSWR would be somewhat less. Nevertheless, IMHO InsertionLoss=1.2dB indicates it as unsuitable such frequencies. Continue reading Ratings of coax antenna switches

InsertionLoss implies InsertionVSWR in lossless devices

Devices inserted in transmission lines often characterised by one or more of:

  1. Insertion VSWR (the input VSWR when terminated with a matched load);
  2. Return Loss (RL) in dB (20 times the log of the magnitude of the complex reflection coefficient); and
  3. Insertion Loss.

Practitioners often find Insertion VSWR (1) of most use as it indicates whether the device is worse than other system devices, the weak link in the chain if you like. You might see a coax antenna switch specified to have InsertionVSWR<1.2 to 60MHz.

Return Loss (2) is a function of VSWR and vice versa, so it appeals when the designer thinks in terms of Return Loss rather than VSWR (and it is a better metric for VSWR<1.2). You might see a coaxial relay specified to have ReturnLoss>30dB to 500MHz.

Insertion Loss (3) is not so readily compared to the other two which are measures of input reflection with a matched termination. It often yields some numbers that appear very acceptable, but might be deceptively so. You might see a coaxial relay specified to have ReturnLoss>30dB to 500MHz. You might see a coax antenna switch specified to have InsertionLoss<0.2dB to 100MHz. Continue reading InsertionLoss implies InsertionVSWR in lossless devices

Atten APS3005S – a better thermostatic fan control

The Atten APS3005S is a 0-30V 5A linear DC power supply.

Atten-hcctl00

This later model includes a thermostatically controlled fan which at moderately light currents short cycles (10s on 20s off) and is very annoying… especially since it sits above my desk.

This project describes application of the generic heating / cooling controller (hcctl) to control the fan, reducing the short cycling nuisance.
Continue reading Atten APS3005S – a better thermostatic fan control

Silver vs alkaline button cells

I purchased a new digital caliper recently (no, they are NOT vernier calipers, though modern usage seems to have misused the term vernier to the point of it having no value).

IMG_1591

A pic of the back reveals their recommendation for a battery, it is in the upper right corner of the pic “Battery 1.55V”. This is really subtle and a departure from previous practice of marking them more clearly SR44.

The nominal voltage of a silver button cell is 1.55V, an alkaline is 1.5V. Continue reading Silver vs alkaline button cells

Micro SD card premature failure

I bought a couple of ‘generic’ micro SD cards on eBay about a year ago. They were not much cheaper than brand name cards, and though only speed 6 rated, were available locally for quick delivery. I have a vague recollection that it might have been a RPi product supplied with NOOBS on it (I have a couple of SD adapters with the RPi logo on them).

IMG_1599

These were both used in RPi B systems and worked without fault for the last year, though they are not running full time (perhaps a couple of hundred hours of use).

During a Raspbian sofware update, both cards failed with the same problem, they effectively became read-only cards. Continue reading Micro SD card premature failure

Chinese counterfeiters at it again – EZP2013

Some while ago I purchased a EZP2013 device programmer on eBay.

EZO2013

There were literally scores of sellers, and they all looked the same, and some variation in price from about US$25 to US$50… which is not unusual.

I used the thing a few times, and it was clearly a very poor product so I replaced it with a SOFI SP-8B which cost close to US$50 on Aliexpress including a bunch of (6) adapters. Continue reading Chinese counterfeiters at it again – EZP2013

UV cure adhesive for temperature sensors

Seeing the promotion of a clear adhesive with cure initiated by ~400nm UV light from a LED source, one’s mind wondered to its application for attaching temperature sensors to heatsinks etc.

A sample of Kafuter K-300 was tested.

UvDiodeTestAbove is the test jig, a 1N4004 diode is attached to the corner of a scrap of 1.6mm thick aluminium sheet using the adhesive which was cured with UV light and then allowed 10 hours further to strengthen (if that helps). Continue reading UV cure adhesive for temperature sensors

PAROT with transformerless power supply and 230V AC relay

This article documents an implementation of PAROT (Power Amplifier Run On Timer) using Transformerless power supply for PAROT.

This PAROT uses a 230V AC relay for 230V mains switching and includes PTT switching using an FOD852 opto coupler.

The intended application is to control power to a valve PA, providing programmable heater delay, and cool down delay of power off.

Parot105

Above is the electronics built on a small piece of Veroboard. This one uses a 0.47µF cap as the power supply current requirements are a little lower than for the SSR. Continue reading PAROT with transformerless power supply and 230V AC relay

Expected ambient noise – in practice

This posts shows a measurement of ambient noise and comparison with the data given at Expected ambient noise and its more detailed references.

The test scenario is my 40m station, a G5RV inverted V dipole with tuned feeders, a balun and ATR-30 ATU. Antenna system losses are less than 1dB.

Clip 200

The chart above gives a range for expected ambient noise at 40m.

40mAmbientNoise

Above is a screen shot from a spectrum analyser measuring power in 1kHz bandwidth from 7.0 to 7.1MHz. The band is mostly unoccupied, and the mean noise power is about -99dBm, it would be 3dB higher in 2KHz bandwidth (ie -96dBm). Continue reading Expected ambient noise – in practice

Expected ambient noise

One of the casualties of the cessation of VK1OD.net was an article on expected ambient noise.

Clip 200

The original work was based on ITU-R P.372-8 which has been updated to -10 and now -12, but the updates do not alter the basis for the original article.

Since the work was a reference cited on my FSM pages, it has been updated and copied to Expected ambient noise level. The graphics and tables in the article and the PDF file all refer to ITU-R P.372-8 but remain correct wrt ITU-R P.372-12 (2015).