DYS SN20A out of the box

I was intrigued by the seemingly endless stream of stories of woes with the DYS SN20A (eg RCTimer / DYS Mini SN20a / SN30a / SN40a esc), so I purchased one to see if they are all bad. Of course, impressions of a sample of size one are of somewhat limited value, but it seemed like an interesting thing to do.

Some reports of problems seem to relate to use of BLHeli on the ESCs, and it seems at least one beta release of BLHeli v14 had defects that resulted in serious damage in unprotected tests.

Discussion blames problems on front ends, flight controllers, wiring, motors, ESCs hardware, firmware, and bootloaders… but all these possible causes evident more so with this one ESC does not seem likely or logical. With the quest for more rapid FC loop response, there is a risk of instability and the drive may be working harder with oscillating demand, only logs from a flying craft will reveal what may be happening in that respect.

The test ESC

The DYS SN20A was purchased from RCTimer for about US$19 inc post. Not an inexpensive ESC by any means.

The DYS SN20A is described as an “opto” but I doubt it is optically coupled, it is probably just another instance of the fraud in terminology where opto refers to a BECless ESC. (If it were optically coupled, it would almost certainly not be a bidirectional servo interface and the SimonK bootloader would not work… but it did.)

SN20-01Above, the top view of an unwrapped SN20A. Continue reading DYS SN20A out of the box

Balanced ATUs and common mode current

This article has been copied by request from my VK1OD.net web site which is no longer online. The article may contain links to articles on that site and which are no longer available.

Many designs have a ‘balanced output’ or an option of a ‘balanced output’, but what does that mean, and are they effective in minimising common mode current in an antenna feed line?

ATUs achieve ‘balanced output’ in one of several ways, the common ones are:

  • a grounded impedance transformation network followed by an internal voltage balun;
  • a grounded impedance transformation network followed by an internal current balun;
  • a current balun followed by a symmetric impedance transformation network that may or may not be directly grounded at its centre;
  • a link coupled ATU where the output circuit is symmetric and may or may not be directly grounded at its centre.

Much has been written about the merits of one approach or another, mostly qualitative and often subjective, but there is little in the way of quantitative analysis of the impedance that the ATU offers to common mode current. Continue reading Balanced ATUs and common mode current

Differential and common mode components of current in a two wire transmission line

A pair of conductors in proximity of some other conductors or conducting surface (such as the natural ground) can operate in two modes simultaneously, differential mode and common mode.

Differential mode is where energy is transferred due to fields between the two conductors forming the pair, and common mode is where energy is transferred due to fields between the two conductors forming the pair together and another conductor or conducting surface.

The currents flowing in the two conductors at any point can be decomposed into the differential and common mode currents.

Differential current Id is the component that is equal but opposite in direction, it is half the difference in the two complex line currents I1 and I2.

Common mode current Ic is the component of the line currents common to both conductors, it is half the sum of I1 and I2.

  • Id=(I1-I2)/2
  • Ic=(I1+I2)/2
  • I1=Ic+Id
  • I2=Ic-Id

So, for example, if I1=2A and I2=-1A, Id=(2–1)/2=1.5A, Ic=(2-1)/2=0.5A.

A line that is operating with perfect current balance has only differential current, ie common mode current is zero. It is unlikely that a feed line in a practical antenna system is perfectly balanced, but with due care, it can have very low common mode current, 20dB or more less than the differential component.

Review of inexpensive Chinese thermostat – 8010F #2

This is a review of an inexpensive 8010F Chinese bang-bang  thermostat that was purchased on eBay for around A$13 complete with thermistor sensor and postage.

cctstat11

Above is the front view of the thermostat. There are many thermostats on the market with similar front panels, but they differ in internals and most importantly, performance and quality.

cctstat41

Above, the rating label is clear and informational.  Continue reading Review of inexpensive Chinese thermostat – 8010F #2

Programming jig for STC15Fx DIP-8, DIP-28 chips

The STC15Fx chips use a simple TTL/CMOS async programming interface that is suited to the common USB-RS232(TTL) adapters, some of which are less than A$2 on eBay (CH341 chip).

STCMicroPgmAdapterAbove, the completed adapter. Both DIP-8 and DIP-28 are located furthese from the operating lever, and pin 1 towards the operating lever, the same jumper connections are used for both chip sizes for STC15F104E and STC15F204E.

There are two spare Gnd pins next to the black jumper above but hidden from view. They are for grounding jumpers that may be required to enable programming of some ‘bootloader protected’ chips.

The 6 pin male and female headers at lower left accept a USB-RS232 adapter (break out board style or cable) with the common Arduino pinout. The only thing that commits the pinout is the 1µF bypass capacitor between Vcc and Gnd pins and the spare Gnd pins. The USB-RS232 adapter powers the chip being programmed, and it needs to be a 5V adapter.

Alternatively one of the little MAX232 adapter boards could be used with a physical RS232 port, but power will be required.

 

Fox flasher MkII

Flashing LED driver using an ESC described a LED driver for an animal deterrent using a repurposed brushless DC motor electronic speed controller.

This article describes a simpler implementation based on a Chinese 8051 architecture microcontroller, the STC15F104E.

ff201

Above, the schematic. A very simple circuit with just a handful of electronic components (one capacitor, two resistors, one LDR, one Polyswitch, 4 x LEDs and the MCU). Continue reading Fox flasher MkII

Using the AIM to measure matched line loss

A correspondent wrote seeking explanation of difficulty he was having measuring line loss using the advice given in the AIM manual using a scan with either O/C or S/C termination:

Note the one-way cable loss is numerically equal to one-half of the return loss. The return loss is the loss that the signal experiences in two passes, down and back along the open cable.

Because my correspondent was using one of the versions of AIM that I know to be unreliable, I have repeated the measurements on a cable at hand using AIM_900B to demonstrate the situation.

The test cable I have used is 10m of RG58C/U which I expect should have matched line loss (MLL) of 0.26dB, but I expect this to be a little worse as it is a budget grade cable that I have measured worse in the past. Continue reading Using the AIM to measure matched line loss

Thermistor for CBAIV

I wanted to embed some thermistors in battery packs to use them with CBAIV and sought specifications from Westmountain Radio who declined to supply the information.

It is a straight forward matter to measure the resistance of a thermistor immersed in a stable bath of water, and similarly to observe the software response to standard resistors. Continue reading Thermistor for CBAIV