EME Calc v11.11 reconciliation issues

A correspondent wrote about trying to reconcile by G/T worksheet with EME Calc.

Many times I have tried to validate it and run into problems. At one time I reported them to the author, but they were never acknowledged, much less fixed.

The specific problem on this occasion relates to the receiver performance tab.

Above is a screenshot (with my annotations) where I have basically stripped the configuration down to a receiver attached to a noiseless antenna with lossless line. Continue reading EME Calc v11.11 reconciliation issues

Implementation of G5RV inverted V using high strength aluminium MIG wire

This article continues on from Workup of G5RV inverted V using high strength aluminium MIG wire and describes the implementation.

Above is a view of the steel mast with the Inverted V G5RV rigged from the top of the 11m mast using a halyard though a purchase on a small gibbet to offset the antenna and feed line from the mast. There are lateral guys at 7m height, and the left hand one is non-conductive synthetic fibre rope. Atop the mast is a 2m/70cm vertical. Continue reading Implementation of G5RV inverted V using high strength aluminium MIG wire

G3CWI’s ground wave tests Jul 2017 using WSPRlite

Richard (G3CWI) published an interesting blog article Comparison of groundwave performance of Small Transmitting Loop and Quarterwave GP summarising a recent WSPR test on 40m over 20km distance.

This article is a walk through of the expected WSPR receive S/N for the case of the 20mW tx on a quarter wave vertical.

100% efficient tx and rx antenna systems

Ground wave suffers attenuation due to two key components:

  1. dispersion of energy as the wave spreads out from the source; and
  2. absorption of energy in heating the soil.

Item (1) is simply inverse square law effect, and Norton provides us with several approximations for estimating (2) from Sommerfields work.

Calculate efficiency of vertically polarised antenna from far field strength uses Norton’s f5 approximation for ground wave attenuation.

Above is a calculation for a 100% efficient transmitter. (The trick to getting this is to leave the measured field strength field empty and the calculator will insert the value that gives 100% efficiency.)

So the next question is what ambient noise level might we expect in a rural setting on 40m. Continue reading G3CWI’s ground wave tests Jul 2017 using WSPRlite

Exploiting your antenna analyser #29

Resolving the sign of reactance – a method – Smith chart detail

Exploiting your antenna analyser #28 gave an example of use of one method to resolve the sign of reactance comparing measurements made with a slightly longer known transmission line.

One way to predict the input impedance to the longer line is using a Smith chart. This article presents a Smith chart prediction of the expected input impedance of a 8′ section of RG8 at 14.17Mhz (vf=0.66, length=0.175λ) for the cases of Zload being 60.3+j26.9Ω and  60.3-j26.9Ω.

60.3+j26.9Ω

The impedance is normalised to 50Ω and plotted on the Smith chart, point 1 above. A radial from the centre through point 1 is drawn to the edge of the chart. Another radial is drawn a distance towards the generator of 0.175λ and using a pair of dividers or ruler, point 2 is plotted on that radial at the same distance from the centre (same VSWR) as point 1.

These points are on a constant VSWR arc but the arc has not been draw because the two arcs would overlap and might be confusing to some readers.  Continue reading Exploiting your antenna analyser #29

Cheap and nasty 50Ω SMA terminations

Chinese sellers offer low cost 50Ω SMA terminations mostly without specs, but some sellers specify VSWR<1.2 to 3GHZ.

Above is the internals of one, it is a 51Ω 5% metal film resistor.

They often fail a DC test and tapping them gives erratic resistance readings up to hundreds of ohms, and of course they can be unreliable at RF.

They rely upon the resistor pigtail to make a spring contact with the inside of the barrel, and give that the pigtail is soft copper with little spring the contact is not very reliable. Continue reading Cheap and nasty 50Ω SMA terminations

Exploiting your antenna analyser #28

Resolving the sign of reactance – a method

Many analysers do not measure the sign of reactance, and display the magnitude of reactance, and likewise for magnitude of phase and magnitude of impedance… though they are often incorrectly and misleadingly labelled otherwise.

The article The sign of reactance explains the problem and dismisses common recipes for resolving the sign of reactance as not general and not reliable.

This article gives an example of one method that may be useful for resolving the sign of reactance.

My correspondent has measured VSWR=1.68 and |Z|=66 and needs to know R and X. From those values we can calculate R=60.3 and |X|=26.9.

Method

The method involves adding a short series section of known line, short enough to provide a measurement difference in R, and that R would be different for the case of =ve and -ve X, all of these measured at the same frequency. Continue reading Exploiting your antenna analyser #28

Ground plane ham myth – inclined radials

From time to time one sees ‘traditional wisdom’ that inclining the radials of a VHF ground plane to raise its feed point resistance degrades it performance significantly.

I have constructed NEC-4.2 models of a 52MHz ground plane with four 45° inclined radials at 10m height above ‘average ground’ (0.005,13) on and connected to a conductive support pole which is bonded to ground at the lower end, and one with horizontal radials.

Comparing the patterns at low angles shows there is not much in it, but below 32° elevation which tends to be of greater interest at VHF, the winner is actually the inclined radials though the difference is less than 1 dB. Continue reading Ground plane ham myth – inclined radials

Matching a 5/8λ ground plane

The 5/8λ ground plane is regarded by hams widely as a superb antenna for DX, and since the main reason for modern ham radio is DX, it is an antenna of interest.

The idea behind the 5/8λ ground plane popularity is that claim that it has higher gain at low angles than a simple 1/4λ ground plane.

The 5/8λ ground plane is not resonant, and the feed point impedance is hardly suited to direct coax feed.

The chart above is for a 5/8λ ground plane elevated to 5m height above average ground (0.005,13). The feed point impedance in this case at 5/8λ radiator height (14.2MHz) is about 110-j485Ω. Continue reading Matching a 5/8λ ground plane

Common mode impedance of W2DU baluns

Walt Maxwell (W2DU) described a simple common mode choke or 1:1 current balun using ferrite sleeves slipped over a coaxial cable.

Fig 1:

Maxwell gives the choking impedance of two of his recommended chokes in Fig 21-3 from (Maxwell 2001). He does not give any detail of how he arrived at the curves, and in correspondence declined to give any detail.

This article focusses on a linear design for HF using 50 x FB-73-2401 (2673002402) ferrite sleeves.

The question that arises is how do you measure the impedance of a component that is 250+mm between terminals. Continue reading Common mode impedance of W2DU baluns