Tricopter build – 20140204

The 1245SF props arrived and replacement HK922 servo, both were fitted.

The tricopter is very hard to fly with 1245SF despite lots of time tuning pitch and roll, and level PID parameters. It appears that the propellers are just too much and that control loop stability is hard to achieve at lower motor speed.

So, the 1145 propellers were refitted and fine tuning of the saved PID parameters commenced.

The replacement servo works fine, stable stand alone with and without load, and mechanically smooth through its entire range (no sign of any stiff spots in the gears as in the previous one).

The project is coming to an end, the tail mechanism is an obvious vulnerability in this implementation though it seems to work quite well… more in the final report.

Foundation manual on power measurement

My article Foundation watts explained triggered some discussion on the thorny issue of compliance with power limits of the LCD.

One correspondent was confident that the Foundation candidates are properly trained, which leads to examining the training materials.

SWRMeter

Continue reading Foundation manual on power measurement

SimonK ESC FW – test of commit 8873df24 – #3

F330-01

SimonK commit 8873df24: (20140119) with COMP_PWM was loaded on the F-30A ESCs on this F330 quad with Multiwii 2.3 FC, 3S, Hobbyking D2830-11 motors and 8×4.5 SF propellers.

Performed rapid acceleration under WOT, motor idle, recovery, maneuvers and no issues, no hint of sync problems, works fine.

SimonK ESC FW – test of commit 8873df24 – #2

X450

SimonK commit 8873df24: (20140119) with COMP_PWM was loaded on the F-30A ESCs on this X450 quad with APM FC, 3S, Hobbyking D3530-14 motors and 11×4.5 SF propellers.

Performed rapid acceleration under WOT, motor idle, recovery, maneuvers and no issues, no hint of sync problems, works fine.

Tricopter build – 20140201

Tests on the tricopter using a data logger to capture motor speed, current and pack voltage gives an insight into platform operation.

CropEagle005

Above, data capture from the tricopter on 3S. The datalogger adds 50g mass.

The plot shows the device hovering at about 5000rpm and 10.8A at 11V. Two WOT ascents were made to check acceleration and motor recovery during closed throttle descents. From idle, it takes about 500ms to accelerate to hover rpm. This test was repeated and the motor reliably restarted every time and the tumbling craft stabilised quickly. A set of 12×4.7SF props has been ordered to try at 3S to more fully load the motors.

Similar tests were conducted also on 4S, and peak current on WOT was 80A on 15.5V for 8500rpm. Operation on 4S would provide sufficient lift to carry a camera payload, but WOT operation exceeds the motor’s continuous current rating.

 

 

Cobwebb antenna impedance matching scheme

From time to time, correspondents have asked how the Cobwebb antenna works, and particularly how the impedance matching scheme works.

Firstly, what is the Cobwebb?

It is an innovative antenna for small spaces, quite compact and as I recall originally intended to cover five amateur bands from 20-10m.

Continue reading Cobwebb antenna impedance matching scheme

Common mode current and coaxial feed lines

An antenna feed line is intended to convey energy from the transmitter to the antenna, and usually without giving rise to radiation itself.

The term “common mode” comes from consideration of the currents on an open two wire line, and it refers to the net  or unbalance current, ie the current that would give rise to external fields, to radiation.

This article looks at the equivalent common mode current in a coaxial transmission line.

Continue reading Common mode current and coaxial feed lines