SimSmith example of VSWR assessment

A reader of On the concept of that P=Pfwd-Prev asked if / how the scenario discussed could be modeled in SimSmith.

SimSmith uses different transmission line modelling to what was used in that article, but a SimSmith model of RG58A/U allows illustration of the principles and it will deliver similar results.

Let’s explore the voltage maximum and minimum nearest the load to show that VSWR calculated from the magnitude of reflection coefficient is pretty meaningless in this scenario.

Above is the basic model. I have created two line sections, one from the load to the first voltage maximum, and another to the first voltage minimum where I have placed the source. I have set Zo to the actual Zo of the line as calculated by SimSmith (56.952373-j8.8572664Ω), effZ as SimSmith calls it, so the Smith chart relates to the real transmission line. Continue reading SimSmith example of VSWR assessment

On the concept of that P=Pfwd-Prev

The article On negative VSWR – Return Loss implications raised the question of the validity of the concept of that P=Pfwd-Prev.

The Superposition Theorem is an important tool in linear circuit analysis, and is used to find the combined response of independent sources. Superposition applies to voltages and currents, but not power. Continue reading On the concept of that P=Pfwd-Prev

On negative VSWR – Return Loss implications

On negative VSWR (read it first) discussed the case of negative VSWR results from some calculating tools  and formulas, and more generally that simple formulas that depend on lossless line assumptions produce errors on practical lossy line scenarios.

Return Loss is defined as the ratio Pfwd/Prev, often given in dB.

Return Loss is usually calculated as 20*log(1/ρ), it yields negative calculated Return Loss for ρ>1. It would be a mistake to doctor the result to hide the negative return loss as it is a strong hint that the results may be invalid.

An important consideration here is the validity of the concept of Pfwd and Prev. Continue reading On negative VSWR – Return Loss implications

On negative VSWR – a worked example

On negative VSWR (read it first) discussed the case of negative VSWR results from some calculating tools  and formulas, and more generally that simple formulas that depend on lossless line assumptions produce errors on practical lossy line scenarios.

This article exposes an example at 100kHz where Zo=50.71-j8.35Ω and Zload=5+j50Ω.

If we were to use a probe to directly measure the magnitude of line voltage, we would expect the following.

Above, the standing wave plot. At first appearance it might look like a classic standing wave plot, but it is not… there is a tiny difference in the shape at the right hand side. Continue reading On negative VSWR – a worked example

On negative VSWR

Some calculating tools come up with a negative value of VSWR under some circumstances.

Considering the meaning of VSWR: the ratio of the voltage maximum on a long transmission line to the adjacent voltage minimum, calculated negative VSWR might seem an aberration, invalid even. Note that nothing in this definition makes VSWR a property of a dimensionless point on a line.

VSWR can be measured directly by sampling voltage along a transmission line with a voltage probe. That said, it is almost never done and VSWR is inferred from other measurements, usually point measurements.

A transmission line is free to carry waves in two directions, and the ratio of voltage to current for each of those waves is the characteristic impedance Zo. Continue reading On negative VSWR

Trying to make sense of the STC U8W chip programmer

STC is a Chinese maker of microcontroller chips, mostly 8051 architecture. The whole environment is characterised by a lack of English language information, or unreliable information.

The U8W is a programmer for some of their chips, and works in concert with their ISP programming software (Windows).

Above is the U8W. It was supplied without any documentation by an Aliexpress seller. Requests from the seller and from STC have not yielded any information. Continue reading Trying to make sense of the STC U8W chip programmer

Fox flasher MkII – update 07/2019

Fox flasher MkII described a LED driver for an animal deterrent using a Chinese 8051 architecture microcontroller, the STC15F104E.

ff201a

Above, the schematic. A very simple circuit with just a handful of electronic components (one capacitor, two resistors, one LDR, one Polyswitch, 4 x LEDs and the MCU). Note the capacitor in shunt with the LDR, it is to reduce noise and to provide a level of RFI protection. Continue reading Fox flasher MkII – update 07/2019