## VU3SQM directional wattmeter build – #4

VU3SQM directional wattmeter build – #1 laid out the first steps in design review and build of a directional wattmeter.

At long last, some PTFE rod arrived to permit assembly of the transformers.

For reasons discussed in an earlier article, the transformers use a larger core than the original VU3SQM. They need to stand above the board, and whilst that compromises the mechanical strength of the assembly, it should have better performance. Continue reading VU3SQM directional wattmeter build – #4

## W5KV’s transmitting loop measurements – DELUXE HG-1 PreciseLOOP 7MHz

Assuming the measurements were made with the antenna clear of disturbing conductors etc, in good condition.

Above is his VSWR scan.

The key measurements were:

• centre frequency 7.175MHz, VSWRmin=1.1;
• VSWR=3 bandwidth 36kHz.

Based on that, we can estimate the half power bandwidth to be 30kHz if R is less than Ro, more like 33kHz in the other case, but we will be optimists.

A NEC-4.2 model of the antenna at 14MHz was built and calibrated to the implied half power bandwidth (30kHz). Model assumptions include:

• ‘average’ ground (σ=0.005, εr=13);
• Q of the tuning capacitor = 2000;
• conductivity of the loop conductor adjusted to calibrate the model half power bandwidth to measurement.

Note that the model may depart from the actual test scenario in other ways.

Above is the VSWR scan of the calibrated model, the load is matched at centre frequency and half power bandwidth is taken as the range between ReturnLoss=6.99dB points. Continue reading W5KV’s transmitting loop measurements – DELUXE HG-1 PreciseLOOP 7MHz

## Measuring common mode current with a scope

I wrote recently of a flawed test of balance performance of an antenna system and an ATU, and some readers have taken up the issue, basically asking the question “then, how do you measure balance of a two wire line with a scope?”

The first step is that you must define what you mean by “balance”.

For most wire HF antennas, the balance objective should be equal but opposite currents in the adjacent wires at all locations along the line (recalling the currents may vary along the line). This reduces radiation from the feed line (which can cause EMC problems with nearby appliances / systems), and reduces very local noise pickup on receive (from those same appliances / systems).

Let’s take KA0KA’s scope display from the reference article, but assume that they were taken from current probes so that we are directly measuring feed line currents rather than voltage. Current probes allow the scope to measure current on a conductor placed through the probe, an RF current probe (or current transformer) can be as simple as a suitable ferrite toroid with the primary conductor passing once through the center of the core, and a secondary winding of 10-30 turns loaded with a low value resistor, and the scope input connected across the resistor.

## The obvious measurement method

Above, the first measurement shows both channels, and the currents appear almost equal in magnitude and almost opposite in phase, but it does appear that there is a slight phase difference, perhaps 5-15° from exactly opposite phase. Each channel is almost 2div peak to peak, and let’s assume the calibration factor is 1A/div. Continue reading Measuring common mode current with a scope

## Australian amateur population trends 1998 – 2018

This is a 2018 update of an article written originally in October 2005, earlier editions published on VK1OD.net which is now offline.

Over recent years to 2002, the number of issued amateur licences was declining, the trend was about 2.8% pa decline over the five years to 2002.

This has concerned some people, who took the view that the decline was a harbinger of the impending demise of Amateur Radio. Continue reading Australian amateur population trends 1998 – 2018

## Radcom Feb 2019 “cable balun” – a deeper look

The article Baluns in antenna systems explores some different dipole and feed line configurations and the effectiveness of common mode chokes at various locations on the feed line.

Models 1, 2 and 3 particularly show the effect of a quarter wave vertical common mode conductor grounded and isolated, and a half wave vertical common mode conductor grounded.

These illustrate that those common mode conductors can be viewed to some extent as a ‘single wire’ transmission line, and the impedance presented at the dipole feed point is low or high in keeping with simple transmission line analysis of a shorted or open line of quarter or half wave length.

The question then arises with the Radcom “cable balun”, does it behave similarly, to what extent does the folding of the conductor affect its quarter wave resonance.

## NEC models

One way to explore this is to construct an NEC model of the structure and a reflection of itself.

### Three quarter wavelength a side folded

Above is the serpentine structure of three quarter wavelength folded, and below it, a reflection of itself. The whole structure is fed in the middle and the impedance vs frequency charted. Continue reading Radcom Feb 2019 “cable balun” – a deeper look

## ATUs and periodic maintenance

Above, internals of the stock ATR-30.

It has been about 5 years since the last PM on my ATR-30 ATU, so time for covers off, thorough inspection for signs of heat damage (particularly coil support insulation, more so if it is thermoplastic like the very popular polystyrene), contact and other arcing, cleaning and lubrication of mechanical parts as needed (including the fan in this case).
Continue reading ATUs and periodic maintenance

## Designing a Gamma Match – confirmation of as-built antennas

Much is written about the virtue of the Gamma Match, and near as much about how they work, and the difficulty in design and implementation.

Designing a Gamma match using a Smith chart showed a design method for a simple Gamma Match using a Smith chart as the design tool.

This article visits the implementation on a pair of antennas that I built 50 years ago, and are still in use today (albeit with some small preventative maintenance once during that interval). The basic antenna is a four element Yagi for 144MHz copied from an ARRL handbook of the time, probably based on NBS 688. It was designed to deliver a split dipole feed point impedance of 50+j0Ω.

I built them using a Gamma Match, partly to get some familiarity, but mostly to implement a Gamma Match that was reliable, weatherproof and lasting… features that are alien to most implementations I had seen at that point.

Both antennas were constructed and the Gamma Match adjusted for VSWR<1.1 using a Bird 43 directional wattmeter. The dimensions of each (including the key gamma dimensions) are the same, not surprising, but a confirmation of repeatability. See Novel Gamma Match Construction for more discussion.

Above is a dimensioned drawing of the construction. Continue reading Designing a Gamma Match – confirmation of as-built antennas

## Radcom Feb 2019 “cable balun”

A correspondent asked for an explanation of a novel balun described in Radcom Feb 2019 by K3MT.

Above is a diagram of the so-called “cable balun”.

To evaluate it, I have inserted it into one of the NEC models used for the article Baluns in antenna systems, the model used for Model 3 which I will repeat here for convenience. Continue reading Radcom Feb 2019 “cable balun”

## VU3SQM directional wattmeter build – #2

VU3SQM directional wattmeter build – #1 laid out the first steps in design review and build of a directional wattmeter.