Transmission line measurements – learning from failure

Introduction

A recent article questioned the accuracy of measurement of Matched Line Loss (MLL) for a modified commercial transmission line. The published results were less than half the loss of an equivalent line in air using copper conductors and lossless dielectric, when in fact there would be good reason to expect that the line modification would probably increase loss.

How do you avoid the pitfalls of using analysers and VNAs to measure line loss?

Lets walk through a simple exercise that you can try at home with a good one port analyser (or VNA). Measuring something that is totally unknown does not provide an external reference point for judging the reasonableness of the results, so will use something that is known to a fair extent,

Experiment

For this exercise, we will measure the Matched Line Loss (MLL) of a 6m length of uniform transmission line, RG58C/U cable, using an AIMUHF analyser. The AIM manual describes the method.

If you need to know the cable loss at other frequencies, enable the Return Loss display using the Setup menu and click Plot Parameters -> Return Loss and then do a regular scan of the cable over the desired frequency range with the far end of the cable open. Move the blue vertical cursor along the scan and the cable loss will be displayed on the right side of the graph for each frequency point

Note the one-way cable loss is numerically equal to one-half of the return loss. The return loss is the loss that the signal experiences in two passes, down and back along the open cable.

Our measurements will show that this is a naively simple explanation, and to take it literally as complete may lead to serious errors. Yes, it IS the equipment manual, but it is my experience that the designers of equipment, and writers of the manuals often show only a superficial knowledge of the relevant material.

Datasheet

Above is an extract of the datasheet for Belden 8262 RG58C/U type cable, our test cable should have similar characteristics. Continue reading Transmission line measurements – learning from failure

Loop in ground (LiG) – #5 – small broadband RF transformer – discussion of ferrite material choice

At Feasibility study – loop in ground for rx only on low HF – small broadband RF transformer using medium µ ferrite core for receiving use – 50:200Ω I laid out a design using Fair-rite a #43 ferrite smallish binocular core. #43 is a medium permeability NiZn ferrite.

I have been asked by several correspondents why I used #43 when the consensus of online experts is that #75 is a clearly better choice for the application.

Let me say that almost all such articles and posts:

  • are absent any quantitative measurement of their proposed design;
  • they tend to use medium to large toroids; and
  • the few that expose their design calcs treat permeability as a real number that is independent of frequency.

#75 mix is a high permeability MnZn ferrite and subject to dimensional resonance in the frequency range of interest for this application, a problem exacerbated by using larger cores.

Permeability is a complex quantity that is frequency dependent and any analysis that pretends otherwise is not soundly based. Continue reading Loop in ground (LiG) – #5 – small broadband RF transformer – discussion of ferrite material choice

Loop in ground (LiG) – #3 – small broadband RF transformer using medium µ ferrite core for receiving use – 50:200Ω

A simplified design for small broadband RF transformers using medium µ ferrite core for receiving use. The specific application is an impedance transformer for a nominally 200Ω antenna to a 50Ω receiver input. Intended frequency range is from 0.5 to 15MHz.

The characteristic of typical medium µ ferrite mixes, particularly NiZn, are well suited to this application.

This article continues with the design discussed at BN43-2402 balun example, but using a BN43-202 with 5t primary and 10t secondary for a nominal 1:4 50:200Ω transformer (though at high ratios, the transformation is only nominal).

Lets consider a couple of simple starting points for low end and high end rolloff. Continue reading Loop in ground (LiG) – #3 – small broadband RF transformer using medium µ ferrite core for receiving use – 50:200Ω

Online calculator of ferrite material permeability interpolations

Many of my articles call for finding the complex permeability of a ferrite components from manufacturer’s data.

Let’s explore an example used in a recent article, Another small broadband RF transformer using medium µ ferrite core for receiving use – 50:450Ω.

The core used was a Fair-rite ferrite core of #43 material, and the magnetising impedance of a 5t winding needed to be found.

Above is a chart from Fair-rite’s catalog. Permeability is a complex quantity and is frequency dependent. One could scale from the graph, the values for µ’ and µ” at the frequency of interest. Continue reading Online calculator of ferrite material permeability interpolations

Another small broadband RF transformer using medium µ ferrite core for receiving use – 50:450Ω

A simplified design for small broadband RF transformers using medium µ ferrite core for receiving use. The specific application is an impedance transformer for a nominally 450Ω antenna to a 50Ω receiver input. Intended frequency range is from 0.5 to 15MHz.

The characteristic of typical medium µ ferrite mixes, particularly NiZn, are well suited to this application.

This article continues with the design discussed at BN43-2402 balun example, but using a BN43-202 with 5t primary and 15t secondary for a nominal 1:9 50:450Ω transformer (though at high ratios, the transformation is only nominal).

Lets consider a couple of simple starting points for low end and high end rolloff. Continue reading Another small broadband RF transformer using medium µ ferrite core for receiving use – 50:450Ω

Another small broadband RF transformer using medium µ ferrite core for receiving use – 50:3200Ω

A simplified design for small broadband RF transformers using medium µ ferrite core for receiving use. The specific application is an input transformer to a nominally 2kΩ receiver at around 9MHz (a panadapter).

The characteristic of typical medium µ ferrite mixes, particularly NiZn, are well suited to this application.

This article continues with the design discussed at BN43-2402 balun example, but using a 2t primary and 16t secondary for a nominal 1:64 50:3400Ω transformer (though at high ratios, the transformation is only nominal).

Lets consider a couple of simple starting points for low end and high end rolloff. Continue reading Another small broadband RF transformer using medium µ ferrite core for receiving use – 50:3200Ω

Small efficient matching transformer for an EFHW

At FT82-43 matching transformer for an EFHW I wrote about the likely losses at 3.6MHz of a common design using a FT82-43 ferrite core with a 3t primary. In that case, expected efficiency (meaning PowerOut/PowerIn) of the transformer was less than 65% at 3.6MHz.

I have been offered input VSWR curves for such a configuration, and they are impressive… but VSWR curves do not address the question of loss / efficiency.

Note that building loss into antenna system components is a legitimate and common method of taming VSWR excursions, eg TTFD, CHA250, many EFHW transformers, but in some applications, users may prioritise radiated power over VSWR.

Design context / objectives

Objectives are:

  • used with a load such that the input impedance Zin is approximately 50+j0Ω, Gin=0.02S;
  • broadband operation from 3.5-30MHz;
  • VSWR less than 2 with nominal 3200Ω load; and
  • transformer efficiency > 90% at 3.6MHz.

The following describes such a transformer using a Fair-rite 2643625002 core (16.25×7.29×14.3mm #43).

I mentioned in the reference article that the metric ΣA/l captures the geometry, the larger it is, the fewer turns for same inductance / impedance. ΣA/l for the chosen core is 3.5 times that of a FT82-43 yet it is only 1.6 times the mass.

The transformer is wound as an autotransformer, 3+21 turns, ie 1:8 turns ratio. Continue reading Small efficient matching transformer for an EFHW

FT82-43 matching transformer for an EFHW

A published design for an EFHW matching device from 80-10m uses the following circuit.

Like almost all such ‘designs’, they are published without supporting measurements or simulations.

The transformer is intended to be used with a load such that the input impedance Zin is approximately 50+j0Ω, Gin=0.02S.

Analysis of a simple model of the transformer with a load such that input impedance is 50+j0Ω gives insight into likely core losses.
Continue reading FT82-43 matching transformer for an EFHW

Surecom SW-102 VSWR meter review – v2.6

At Surecom SW-102 VSWR meter review I wrote a review of a meter which I had purchased a little over a year ago, it was at v4.5.

One of the many problems identified was inconsistency of displayed values.

v2.6

Surecom’s versions are confusing, the highest number is not necessarily the latest version. It appears a partial version history from their current page advertising the SW-102 is:

OLD VERSION : V3.3 ,V3.8 ,V4.5,V4.9 ,V5.0,V5.1
2017-8 NEW VERSION : V2.02 ,V2.03

The following image is from Surecom’s current page advertising the SW-102, and I assume that the version shown here (v2.6) is the latest at time of writing.

The image captures the outputs of two tests with poor and good dummy loads.

Let’s check the displayed values for internal consistency. Continue reading Surecom SW-102 VSWR meter review – v2.6

Finding velocity factor of coaxial transmission line using the velocity factor solver

This article is a tutorial in use of Velocity factor solver to find the velocity factor of a sample coaxial transmission line using an antenna analyser.

Example 1: Youkits FG-01

we have two lengths of H&S RG223 terminated in identical BNC connectors at both ends. Let’s connect each in turn to a Youkits FG-01 antenna analyser and find the quarter wave resonance of each (ie the lowest frequency at which measured X passes through zero).

Above, the line sections are connected to the Youkits, and the length overall is measured from the case of the analyser to the of the cable.
Continue reading Finding velocity factor of coaxial transmission line using the velocity factor solver