ESP8266 remote power display for energy monitor – EV2

See ESP8266 remote power display for energy monitor – EV3 for an update…

ESP8266 remote power display for energy monitor documented a design and some variations for a real power display display using emontx3 / emonhub / mqtt. This article documents a simple compact implementation.

Hardware

The remote power display uses a ESP8266-12E devkit 1.0 module, a common 3.3V 4 digit 14.2mm seven segment LED module with 74HC595 shift register per digit. The particular LED module has sufficient space to mount the ESP8266 inside the module.

Above, the interior of the module that suits the implementation. Continue reading ESP8266 remote power display for energy monitor – EV2

ESP8266 remote power display for energy monitor

This article documents remote power display for an energy monitor system based on emontx3 / emonhub / mqtt.

The remote power display connects via WiFi and subscribes to a topic on a MQTT server, updates are published every 10s with data from the emontx3 by emonhub.

Hardware

The remote power display uses a Wemos D1Pro ESP8266 module, a common 4 digit 14.2mm seven segment LED module with 74HC595 shift register per digit, and a simple 3V/5V level converter between the two (see above shrink wrapped in the cable from the D1Pro to the display).  Continue reading ESP8266 remote power display for energy monitor

Inductance of a loop of CAT5 pair

An online expert recently reported:

I tried to make an antenna loop for longwave with cat 5 and after it did no good I realized the twisted wires canceled each other out.

Or did they really cancel?

Parallel connection

I constructed a loop of one Cat 5 pair and measured its inductance when both wires are bonded at the ends.

The conductors are 0.5mm diameter and spaced 0.9mm. To estimate the inductance we use the geometric mean radius (GMR) as the equivalent radius of the pair. GMR=(0.5*0.9)^0.5=0.67, diameter=1.34mm. So let’s calculate the inductance of a single turn circular loop of 0.8m perimeter and round conductor of 1.34mm diameter.

The estimate above is 850nH.

Above is the measurement, the screen is not readable, but it is 852nH, very close to the estimated 850nH. Continue reading Inductance of a loop of CAT5 pair

Inductance of sensorless brushless DC motors

A reader of A Demagnetisation Risk Index for a sensorless brushless DC drive asked whether the inductance of a sensorless brushless DC motor could be measured with one of the inexpensive LC meters available on eBay.

Motor inductance line-line typically ranges from several µH up towards 100µH. Importantly, the fundamental frequency of flux change in the laminated iron core under normal operation is typically less than 2kHz.

Validation of the LC200A

To verify the instrument, a test inductor was made with 3t on a FT-240-43 ferrite core.

Above is an estimate of the expected inductance of the test inductor, 9.65µH. Keep in mind that the tolerance of ferrite is quite wide, 20% variation is not unusual. The test inductor measured 9.1µH at 10kHz on a classic RLC meter.

Above, the LC200A measuring an inductor comprising 3t on a FT240-43 ferrite core, measurement frequency was 670kHz. The measured inductance is 8.98µH, 7% lower than the estimate but well within tolerance of the ferrite core, and less than 2% below the value measure with a classic RLC meter. Continue reading Inductance of sensorless brushless DC motors

SCT-010-000 current transformer protection

The YHDC SCT-010-000 clip-on or non-invasive current transformer is widely used in DIY energy monitor applications, and is readily available on eBay for A$6 including post.

A key issue with current transformers is that current in the primary winding will cause excessive voltages in the secondary winding unless the secondary winding is suitably loaded. The broad rule of thumb is NEVER disconnect the output connections whilst current flows through the primary.

 

YHDC’s website is typical of Chinese web sites, and I could not find a datasheet for information on the internal circuit and possibly internal protection.
Continue reading SCT-010-000 current transformer protection

Review of Hantek DSO8102E hand held oscilloscope

This article is a brief review of some issues that were found with initial testing of a Hantek DSO8102E two channel 100MHz hand held oscilloscope.

The DSO8102E is a member of the DSO8000 series (DSO8060, DSO8070E, DSO8100E, DSO8150E, DSO8200E), and shares most specifications across the series.

The specifications are very impressive, and price at just under $1000 for a Chinese brand seemed reasonable (hand held oscilloscopes are expensive compared to bench oscilloscopes).

The test scenario was a practical application, observation of the data traffic to/from a DHT22 temperature and humidity sensor in the project ESP8266 IoT DHT22 temperature and humidity – evolution 2. Continue reading Review of Hantek DSO8102E hand held oscilloscope

ESP8266 IoT DHT22 temperature and humidity – evolution 3

This article documents a first project with the Espressif ESP8266 in its third evolution (based on ESP8266 IoT DHT22 temperature and humidity – evolution 2).

The objective is a module that will take periodic temperature and humidity measurements, and in this evolution publish them using a RESTful API.

Evolution 3

The example platform used in this article is a Wemos D1Pro. In this case, the D1Pro is configured for an external antenna, and a modification is made to the board to add a 1N34A diode for the deep sleep reset circuit (NodeMCU devkit V1 deep sleep). A three pin right angle header to the top of the board (as seen) and another on the underside on the opposite edge to get GND, +5, +3, and D4 for the DHT22 data wire. There is less than $20 in parts in the pic above. Continue reading ESP8266 IoT DHT22 temperature and humidity – evolution 3

High gain external antenna for Wemos ProMini

I have some IoT projects that would benefit from range afforded by a better antenna than the on-board antennas in most ESP8266 modules.

The Wemos ProMini has an on-board IPX socket for an external antenna so it is a candidate. Note that a 0R 0603 resistor needs to be removed and another or a wire link soldered in to route the RF to the IPX socket.

Above the Wemos ProMini with a 7dBi SMA-RP antenna ($1.80) and flylead SMA-R(F) to IPX (M) ($1.00).  Continue reading High gain external antenna for Wemos ProMini