Annual inspection of antenna reveals balun box issue

During annual inspection of my HF antenna system, I removed the lid from the common mode choke.

AtuBalun202

The choke is housed in a (German) Hensel PS electrical terminal box. Hairline cracks were observed radiating out from one of the terminal screws, and adjacent to both screws in the lid. The lid is obviously not strong enough to be secured by two screws in the way done. Continue reading Annual inspection of antenna reveals balun box issue

Review of W8TEE, AC8GY STL (Radcom Feb 2020)

(Purdum 2020) describes a small transmitting loop (STL) which is a little novel in that it uses an arrangement of four circular conductor loops, two in parallel in series with the other two in parallel.

The article goes on to claim some pretty extraordinary efficiency calculated from radiation resistance for a loop structure that is shown at a height of perhaps 2m above natural ground. Continue reading Review of W8TEE, AC8GY STL (Radcom Feb 2020)

A thinking exercise on Jacobi Maximum Power Transfer #4

The article A thinking exercise on Jacobi Maximum Power Transfer #3 discussed Kurokawa’s power reflection coefficient as in indicator of mismatch at a system node.

Above is a demonstration circuit in Simsmith, a linear source with Thevenin equivalent impedance of 50-j5Ω. The equivalent voltage is specified by useZo, which like much of Simsmith is counter intuitive (as you are not actually directly specifying generator impedance):

Vthev and Zthev are chosen so that ‘useZo’ will deliver 1 watt to a circuit impedance that equals the G.Zo. Zthev will be Zo*.

Continue reading A thinking exercise on Jacobi Maximum Power Transfer #4

The transmitter matching problem

In the article The system wide conjugate match stuff crashes out again I worked through an example proffered in an online discussion to show that Walter Maxwell’s teachings on system wide simultaneous conjugate match do not tend to occur in practical systems.

Why are hams so obsessed with conjugate matching?

The answer is on the face of it quite simple. Continue reading The transmitter matching problem

A thinking exercise on Jacobi Maximum Power Transfer #3

At A thinking exercise on Jacobi Maximum Power Transfer #2 I posed the question of a metric for the mismatch at the L2L1 junction in the following network where the calculated values L2L1_lZ is the load impedance at the L2L1 junction (looking left as Simsmith is unconventional), and L2L1_sZ is the source impedance at the L2L1 junction (looking right). The left three components are the fixed antenna representation.

Common practice is to speak of a “source VSWR” to mean the VSWR calculated or measured looking towards the source, and very commonly this is taken wrt 50+j0Ω which may be neither the source or load impedance but an arbitrary reference. Continue reading A thinking exercise on Jacobi Maximum Power Transfer #3

A thinking exercise on Jacobi Maximum Power Transfer #2

At A thinking exercise on Jacobi Maximum Power Transfer I posed an unanswered Q2:

Keeping in mind that C2 and L2 are an adjustable matching network, usually adjusted for minimum VSWR as seen at the source G. So, the questions are:

  1. Does the system take maximum available power from the source G when the load impedance seen by source G is equal to the conjugate of its Thevenin equivalent source impedance (ie C2.Z=G.Zo in Simsmith speak)?

  2. Does that ‘matched’ condition result in maximum power in the load L?

Above for reader’s convenience is the model conjugate matched at the GC2 interface. The calculated Po figure (lower right) is the power in the load L to high resolution. Continue reading A thinking exercise on Jacobi Maximum Power Transfer #2

nanoVNA-H – rework of v3.3 PCB to v3.4?

nanoVNA-H v3.4 is out, and I don’t yet see significant problem reports.

When I compare the circuit with v3.3 (which I have), apart from new battery charger IC etc, the changes are in three areas:

  1. decoupling power to the mixers;
  2. increasing the drive to the mixers; and
  3. higher attenuation of input on the rx port. Continue reading nanoVNA-H – rework of v3.3 PCB to v3.4?

A thinking exercise on Jacobi Maximum Power Transfer

At The system wide conjugate match stuff crashes out again I discussed the failure of Walt Maxwell’s teachings on system wide simultaneous conjugate match using an example drawn from an online expert’s posting.

The replicated scenario with matching with an L network where the inductor has a Q of 100, no other loss elements is shown below. (Quality real capacitor losses are very small, and the behavior will not change much, the inductor loss dominates.)

Above is a model in Simsmith where I have adjusted the lossy L network for a near perfect match. I have used a facility in Simsmith to calculate the impedance looking back from L1, often known as the source impedance at a node but in Simsmith speak the calculated L1_revZ on the form, (ie back into the L network)  from the equivalent load. Continue reading A thinking exercise on Jacobi Maximum Power Transfer

nanoVNA-H – v3.3 USB problems

At nanoVNA – measurement of two 920MHz LoRa antennas I mentioned my growing frustration with the USB interface on the nanovna, particularly the tendency to reset the nanoVNA with the slightest wiggle and the frustration in trying to use the resulting mess.

I have previously cleaned both plug and socket a couple of times, the last time was after some board modifications and flux residue was washed from the board keeping the USB socket dry, then the USB socket was flushed with clean solvent and blow dry.

The USB problems have become apparent only recently and rapidly got worse. Continue reading nanoVNA-H – v3.3 USB problems