## An NEC-4.2 model of VK5BR’s 1m square loop for 20m

(Butler 1991) gives a design for a Small Transmitting Loop (STL) for 14MHz and some other bands.

He gives key design data:

Tube Diameter d   0.75 inch
Circumference S  12.7 feet
Area A =   10 square feet
Frequency f =  14.2MHz
Power P   100 watts
Radiation Resistance Rr =   0.137 ohm
Loss Resistance RL =   0.064 ohm
Efficiency n =  68%
Inductance L =   3.27 micro-henry
Q factor =   723
Inductive reactance XL =   291 ohms
Bandwidth B =   19.6kHz
Distributed capacity Cd =   10.4pF
Capacitor potential Vc =   4587V
Tuning capacitor Ct =   28pF


The data above appear to ignore some important factors, and estimate some others based on an assumption of uniform current. Continue reading An NEC-4.2 model of VK5BR’s 1m square loop for 20m

## Underhill on Small Transmitting Loop efficiency

The meaning of the terms efficiency and radiation resistance are often critical to understanding written work on antennas, yet different authors use them differently, often without declaring their intended meaning.

Mike Underhill (G3LHZ) is an enthusiastic proponent of Small Transmitting Loops and in his slide presentation (Underhill 2006) challenges the proposition that their efficiency is low.

The line taken broadly is to introduce his own interpretation of efficiency and to challenge by experimental evidence other views on expected efficiency. Continue reading Underhill on Small Transmitting Loop efficiency

## Trombone capacitors in Small Transmitting Loops

Small Transmitting Loops (STL) usually require a capacitor to tune the loop to resonance for ease of efficient matching.

For an efficient STL that can handle moderate power, the capacitor must withstand extreme voltage, and must have extremely low equivalent series resistance (ESR).

(Straw 2007) describes the so-called ‘trombone’ capacitor which is attributed to Bill Jones, KD7S, originally in Nov 1994 QST.

## Review of G3LDO STL (Radcom Sep 2010)

(Dodd 2010) describe a small transmitting loop (STL) and gave some meaningful performance measurements. It is rare to see such measurements and he is to be congratulated.

The loop is an octagon of perimeter 4.7m which at 14.2MHz is 0.224λ so although many will consider it meets the requirements of an STL, the common formula for radiation resistance Rr of a STL fail for perimeter above about 0.1λ (see Accuracy of estimation of radiation resistance of small transmitting loops).

Dodd gives calculations of one of the many simple loop calculators which gives Rr as 0.422Ω, it is probably closer to 160% of that value. This is an important quantity as it has direct bearing on calculated efficiency.

Dodd’s NEC model should have used a better figure for Rr, but it seems unlikely that the structural losses were fully included and its bandwidth prediction will be impaired. Above is Dodd’s measurement of antenna VSWR at 20m. This is most useful as it allows estimation of the half power bandwidth of the antenna. In this case, the antenna is not perfectly matched at its centre frequency, the residual VSWR is 1.07. The graph allows scaling off the VSWR=2 bandwidth as approximately 42kHz.

## Helical loading and Calculate small transmitting loop gain from bandwidth measurement

Several correspondents have asked about the application of Calculate small transmitting loop gain from bandwidth measurement to the helically loaded small transmitting loop.

The helically loaded small transmitting loop appears to be the invention of K8NDS and is described at Stealth Antennas for the Radio Amateur and (K8NDS nd). It may not be a novel idea as it was analysed at (Maclean 1978).

Without getting too much involved in the inventor’s specious arguments which attribute magic properties to his antenna, this article focusses on whether / why the calculator will or will not provide valid results for the antenna.

At Stealth Antennas for the Radio Amateur he makes the statement

A solid copper tube “Magnetic Loop” exhibits a certain inductance per foot of the total circumference of the antenna.

The statement seems to belie a basic understanding of inductance, the inductance of a given conductor formed into a single turn loop is not simply perimeter multiplied by some constant “inductance per foot”. Continue reading Helical loading and Calculate small transmitting loop gain from bandwidth measurement

## A method for initial ground loss estimates for an STL

Over recent weeks, I have run literally hundreds of thousands of NEC models of small transmitting loops (STL) over real ground. The objective was to try to discover some simple methods for initial design of a STL, particularly an estimate of ground loss of STL mounted near natural ground. Continue reading A method for initial ground loss estimates for an STL

## NEC-4 vs NEC-2 on a low small transmitting loop

This article compares a series of models of a small transmitting loop at varying height above real ground using NEC-4 and NEC-2.

The models are of an octagonal loop of thin wire of the same area as a 1m diameter circle over real ground (0.007/17). Height is measured to the centre of the loop, and all impedances are wrt the main loop. Above is the NEC-2 result.

## Accuracy of estimation of radiation resistance of small transmitting loops

A simple formula exists for calculation of radiation resistance of a small transmitting loop in free space. The derivation is in most good antenna text books.

$$R_r=\frac{\mu_0c_0}{6\pi}A^2(\frac{2 \pi}{\lambda})^4\\$$

The expression depends on an assumption that current around the loop is uniform, so the question is what is the acceptable limit for loop size.

NEC might provide some guidance. A series of NEC-4 models of a octagonal loop of thin lossless wire in free space was constructed with varying perimeter. Perimeter shown is that of a circle of the same area. Above is a comparison of the two methods of estimation of Rr. To the extent that we trust NEC-4, the graph indicates that error in the simple formula grows quickly for loop perimeter greater than 0.1λ. (The results using NEC-2 are visually identical.)

Many authors set the criteria for a small loop to perimeter<0.3λ, but it is clear that current is not sufficiently uniform for perimeter>0.1λ for estimation of Rr as 31149*(A/λ^2)^2 to 0.1pu error or better.

## Small transmitting loop – ground loss relationship to radiation resistance

This article documents a series of NEC-2 models at 7.2MHz of a lossless small transmitting loop near ground for the insight that they might provide about underlying loss mechanisms.

Key model details:

• lossless conductor 25mm diameter;
• octagon of sides 403mm, has same enclosed area as a 1m diameter circle;
• three ground types;
• height varies from 1.5-10m to centre of loop.

Impedance elements discussed in this article are referred to the main loop. Continue reading Small transmitting loop – ground loss relationship to radiation resistance

## VK3IL’s 3m circumference LDF4-50B loop on 20m

David, VK3IL, describes a small transmitting loop (STL) at Portable magnetic loop antenna.

At VK3IL’s 3m circumference LDF4-50B loop on 40m. I reviewed his loop behaviour on 40m, and its efficiency was quite low… though typical of a loop of that size at that frequency.

Radiation resistance of a STL is proportional to the fourth power of frequency, and since it is often dwarfed by loss resistance, we should expect that doubling frequency will dramatically improve performance.

As far as I can glean from the article, it is made from a 3m length of LDF4-50B Heliax, and uses a Patterson match to tune it. David offered measurement of VSWR around centre frequency for the loop approximately matched (VSWR=1.24) on 20m. He has measured the VSWR=2.86 bandwidth shown between markers 2 and 3 to be 45kHz. Continue reading VK3IL’s 3m circumference LDF4-50B loop on 20m