ARRL guidance on design of ferrite cored inductors

The ARRL handbook for radio communications (Ward 2011) gives guidance on designing with ferrite cored inductors:

Ferrite cores are often unpainted, unlike powdered-iron toroids. Ferrite toroids and rods often have sharp edges, while powdered-iron toroids usually have rounded edges.
Because of their higher permeabilities, the formulas for calculating inductance and turns require slight modification. Manufacturers list ferrite AL values in mH per 1000 turnssquared. Thus, to calculate inductance, the formula is

L=ALxN2/1000000

where:

L = the inductance in mH
AL = the inductance index in mH per 1000 turns-squared, and
N = the number of turns.

Example: What is the inductance of a 60-turn inductor on a core with an AL of 523? (See the chapter Component Data and References for more detailed data on the range of available cores.)

L=ALxN2/1000000=523×602/1000000=1.88e6/1e6=1.88mH

Lets follow the example through. Continue reading ARRL guidance on design of ferrite cored inductors

Review of inexpensive Chinese LAN cable tester

I bought an inexpensive LAN cable tester to give to my daughter.

Above is the sellers pic, the specifications states that it checks data wires 1-8 and the shield / ground connection of STP cables.

On test, it failed to show the shield connection on an STP cable, the LED did not light on either the master or the slave unit.

I tore it apart to see if it was worth getting a replacement. Continue reading Review of inexpensive Chinese LAN cable tester

Speaker tick generator (for polarity testing)

A recent purchase of an inexpensive ($6) speaker polarity tester prompted a need for a stand alone driver for speakers.

Above, the tester has a microphone that senses the polarity of the pressure wave and indicates with one of two LEDs.

The tester comes with a CD containing a file that can be used to provide the test signal on a complete system with CD player, but there is a need for a stand alone driver for testing bare speakers or speaker units. Continue reading Speaker tick generator (for polarity testing)

Common mode choke for DSL line

Having decided to sack iiNet broadband because of recurrent under performance, I need to change VDSL2 modem as the one they supplied was locked to their SIP server (despite their assurances that there was no equipment lock-in).

I replaced it with a TP-Link Archer VR200v which seems to work ok except it is susceptible to disruption when I transmit on HF. The disruption is severe, it causes the VDSL2 modem to disconnect, and it takes around 5 minutes to reconnect.

Several different common mode chokes were tried, all of measured performance, and they all worked in that they eliminated the disconnection problem though they all resulted in small but acceptable uncorrected upstream errors. (Upstream errors are interesting since the upstream modem is 1000m distant.)

The ‘final’ design was chose as the core was just large enough to wind ordinary 4W modular cable through it. So the choke comprises a 2m length of 4W flat modular cable, one end wound 6 turns through a Fair-rite 2643102002 (FB43-1020) suppression sleeve, and RJ12 connectors crunched on in straight through pin wiring (ie reverse the plugs). I found the line jack in the modem would not accept RJ11 (4P4C) plugs readily (common with RJ45 sockets), it required an RJ12 plug. Continue reading Common mode choke for DSL line

Vacuum capacitors – construction implications for SRF

Vacuum capacitors are used for high end applications that require high voltage withstand and low loss.

Though they are called capacitors, and simple analyses treat them as a capacitance with some small equivalent series resistance (ESR), there is more to it.

Above is a view (courtesy of N4MQ) looking into one side of a vacuum capacitor. It consists of an outer cup, and a series of 5 inner cups progressively smaller in diameter. The other side of the capacitor has a similar structure but the cups site in the middle of the spaces between cups in the first side.
Continue reading Vacuum capacitors – construction implications for SRF

Vacuum capacitors – construction implications for Q

Vacuum capacitors are used for high end applications that require high voltage withstand and low loss.

Though they are called capacitors, and simple analyses treat them as a capacitance with some small equivalent series resistance (ESR), there is more to it.

Above is a view (courtesy of N4MQ) looking into one side of a vacuum capacitor. It consists of an outer cup, and a series of 5 inner cups progressively smaller in diameter. The other side of the capacitor has a similar structure but the cups site in the middle of the spaces between cups in the first side.
Continue reading Vacuum capacitors – construction implications for Q

A comparo of two bare light dimmer modules

Two bare dimmer modules sold on eBay with identical specification and similar price are compared.

Both claim to have zero hysteresis. Zero hints a lie!

Hysteresis is caused in simple phase control dimmer circuits at low settings because in each half cycle the trigger capacitor starts at a different voltage depending on whether the diac fired on the previous half cycle.

A serious issue with this snap-on effect is that if power is turned off at low power setting and re-applied, the controller may not switch on.

Above is type 1, a very triac basic phase control circuit. The red capacitor and resistor to its left are snubber components, the yellow capacitor, 4.7kΩ resistor to its left and the 500k pot are the phase delay circuit, the diac is just visible above the red capacitor. Continue reading A comparo of two bare light dimmer modules