Antenna analyser – what if the device under test does not have a coax plug on it?

I have written a few articles on fixtures for adapting the device under test (DUT) to an antenna analyser’s coax jack.

Antenna analysers come with a range of connectors, the UHF connector is very popular, perhaps less so are N-type, SMA and BNC.

I use a range of fixtures made to suit specific applications, but the most flexible are the two shown in the following pic.

Above are two adapters: Continue reading Antenna analyser – what if the device under test does not have a coax plug on it?

Maximum acceptable receiver noise figure – derived from ITU-R P.372-13 guidance

Minimum ambient noise level – ITU-R P.372-13 guidance discussed S/N degradation in a receive system with given noise figure (NF) based on ITU-R P.372-13. This article uses the same data to determine the maximum acceptable receiver noise figure for a given S/N degradation.

The analysis assumes linear systems (eg no signficant intermodulation distortion).

What is the minimum ambient noise level?

Above is Fig 2 from ITU-R P.372-13 which shows some key components of total ambient noise. The solid line is entitled “minimum noise level expected”, and it is a combination of curves B, C and D. Above 0.7MHz, only curves C and D are at play. Continue reading Maximum acceptable receiver noise figure – derived from ITU-R P.372-13 guidance

Noise Figure measurement of a converter / transverter

I recently came across an article Signal level measurement with PowerSDR and external transverters in which Carol (KP4MD) details a set of measurements of a Flex 1500 transceiver and Electraft XV144 transverter.

Carol gives the following table of measurements and calculated results.

Table 1.  Transverter Measurements
Freq
MHz
Noise
Source
ENR (dB)
Noise/10
kHz
Conversion
Gain (dB)
Noise
Figure
(db)
50 Ω expected Noise On Noise Off On-Off (Y)
144 15.2 -134 dBm -118.8 dBm -132.1 dBm 13.3 dB 26.5 2.1
432 15.3 -134 dBm -118.7 dBm -131.7 dBm 13 dB 24.1 2.5

Lets focus on the 144MHz measurements. Continue reading Noise Figure measurement of a converter / transverter

Optimum receive system noise figure for given ambient noise – Flex 6700

This article is a follow up to Optimum receive system noise figure for given ambient noise – Flex 6600 using data published at (Farson 2014) to make similar estimates for the Flex 6700.

Farson gives a table of MDS in 500Hz bandwidth figures for the 6700 on certain bandws, including MDS for 4 RF Gain configurations, 0, 10, 20, and 30dB.

Above is Farson’s data with my chosen RF Gain option (selected for SND<3dB) and calculated values in yellow and orange for: Continue reading Optimum receive system noise figure for given ambient noise – Flex 6700

Optimum receive system noise figure for given ambient noise – Flex 6600

Gerald Youngblood (K5SDR) of FlexRadio wrote of optimal receiver noise figure relationship to antenna noise in a blog posting about SDR receivers.

This article discusses that posting in the context of linear receivers, ie effects of intermodulation distortion are not included.

His gives the following advice:

For optimal weak signal performance near the atmospheric (antenna) noise floor you want your receiver noise floor (sensitivity/MDS) to be 8 to 10 dB below the noise coming from the antenna.  For strong signal reception, less sensitivity is almost always better.

The terminology is not industry standard, but that is quite  usual for hams who have a need to redefine well known terms, and this is really loose with implied equivalence (eg sensitivity/MDS).

ITU-R P.372-14 speaks of natural noise as including atmospheric noise due to lightning, and also speaks of man made noise.

It is likely Youngblood is actually talking about man made noise since he uses man made noise figures from an earlier revision of P.372.

Optimal is a compromise between weak signal performance (ie S/N degradation due to internal receiver noise) and handling of strong signals that might clip in the ADC of an SDR receiver.

He gives a table of measured MDS (minimum discernable signal, which actually is synonymous with Noisefloor) for recommended configurations of a Flex 6600 radio on several bands.

Above is Youngblood’s data with my calculated values in yellow and orange for: Continue reading Optimum receive system noise figure for given ambient noise – Flex 6600

Minimum ambient noise level – ITU-R P.372-13 guidance

Comments were received from some readers of the article S/N degradation is related to external noise level and receive system internal noise.

Essentially, two questions were asked:

  • what is the minimum HF ambient noise level; and
  • explain observation of lower HF ambient noise level.

What is the minimum ambient noise level?

Above is Fig 2 from ITU-R P.372-13 which shows some key components of total ambient noise. The solid line is entitled “minimum noise level expected”, and it is a combination of curves B, C and D. Above 0.7MHz, only curves C and D are at play. Continue reading Minimum ambient noise level – ITU-R P.372-13 guidance

Franklin antenna – how does it work?

(Franklin 1924) described a technique to cophase sections of a long antenna by “concentrating alternating half wave length portions of the wire within a small space, by winding such portions as inductance coils or by doubling such portions back on themselves so that there is practically no radiation from these portions”.

Let’s explore his second option, as unlike the first, it does work reliably.

Above is an NEC-4.2 model with current shown (magnitude and phase). The stubs conductors are all defined from top to bottom. Continue reading Franklin antenna – how does it work?

End Fed Half Wave matching transformer – 80-20m – LO1238 variant

A reader of End Fed Half Wave matching transformer – 80-20m asked if a good transformer could be made with with a FT114-43 core.

The original transformer above comprised a 32t of 0.65mm enamelled copper winding on a FT240-43 ferrite core, tapped at 4t to be used as an autotransformer to step down a load impedance of around 3300Ω to around 50Ω. Continue reading End Fed Half Wave matching transformer – 80-20m – LO1238 variant

S/N degradation is related to external noise level and receive system internal noise

A question that arises from time to time is what is the minimum receiver noise figure for a given application.

This discussion considers the question applied to linear receivers, ie receivers with zero intermodulation distortion (IMD) and other non ideal characteristics, other than their internal noise which can be described by their Noise Figure (NF).

By definition, NF is the amount by which the component or system degrades the NF, so in dB it is the difference in the S/N in to S/N out. Implicit in that definition is that it is based on source internal noise of 290K equivalent.

HF example

So for example lets say a receiver with effective noise bandwidth 2000Hz measures sensitivity of -125dBm for 10dB S/N out. We can calculate the noise in 2000Hz bandwidth from a 290K source to be -141dBm, and therefore the input S/N is -125 – -141 = 16dB. The ratio of the input S/N to output S/N is the difference in those in dB, 16-10=6dB. The NF is 6dB. We can also calculate an equivalent internal noise temperature of (10^(6/10)-1)*290=865K.

By convention, ambient noise (or external noise) is expressed in Kelvins, or dB wrt 290K. That does not imply that an antenna contributes exactly 290K. Continue reading S/N degradation is related to external noise level and receive system internal noise

End Fed Half Wave matching transformer – 80-20m – 2xFT240-43 variant

A reader of End Fed Half Wave matching transformer – 80-20m asked if a better transformer could be made with a stack of 2 x FT240-43 cores and using half the turns.

The original transformer above comprised a 32t of 0.65mm enamelled copper winding on a FT240-43 ferrite core, tapped at 4t to be used as an autotransformer to step down a load impedance of around 3300Ω to around 50Ω. Continue reading End Fed Half Wave matching transformer – 80-20m – 2xFT240-43 variant