AIM 882 produces internally inconsistent results and AIM 882 produces internally inconsistent results – more tests raised some issues with AIM882 software.
AIM885 has been released. Continue reading AIM 885 produces internally inconsistent results
AIM 882 produces internally inconsistent results and AIM 882 produces internally inconsistent results – more tests raised some issues with AIM882 software.
AIM885 has been released. Continue reading AIM 885 produces internally inconsistent results
I received a sample of speaker wire from a correspondent who asked me to characterise it.
Even if I had the time, a 50mm sample isn’t sufficient to characterise in a meaningful way… but let’s have an abbreviated look which will highlight the pitfalls of this stuff.
First thing to do is measure the conductors, stranding and diameter. There are 14 strands and several measurements fall just below 0.15mm diameter. This is probably nominal 0.15mm with new drawing dies which are a little undersize. Continue reading Speaker wire is so popular as an RF transmission line
Feeding at a current maximum visited the common practice of designing to feed a multi band dipole with open wire feed at or very near to a current maximum.
I explained that feeding at the current maximum may provide sub-optimal performance on the popular T-match ATU as its losses tend to be worst with low R loads, aggravated by the use of 4:1 baluns for even lower R.
On the other hand, feeding at a voltage maximum might exceed the ATU’s voltage capacity, or perhaps be outside of the matching range of the ATU.
Well if neither of these is optimal in all cases, what about half way between. It has been done, the odd eighths wave feed line on an 80m half wave is another of the recipes you will hear.
Lets explore the options of a half wave dipole at 3.6MHz with four different feed line lengths (Wireman 551). Continue reading Feeding at a current maximum, and three other options
I mentioned in my (revised) article W5DXP’s current maximum calculator that lots of ham subscribe to the strategy of feeding a dipole / open wire feeder combination at current maximum.
Why is that? Continue reading Feeding at a current maximum
(Trask 2005b) describes a circuit at Figure 7 which the author describes as a 1:1 current balun though he does not actually define or reference a definition of the term current balun.
Continue reading Review of Trask’s 1:1 current balun
At Where is the best place to measure feed point VSWR I discussed location of the VSWR meter and projection of its reading to another point on a known transmission line.
A correspondent has taken me to task and citing Telepost’s LP-100A manual: Continue reading LP-100A manual advice on VSWR measurement
This is a follow up to Attempting to reconcile W5DXP & G3TXQ’s comparison of K and 52 mix ferrites.
Steve saw the above article and revisited the FT240-52 measurements which he apparently did, and found them wanting: Continue reading Attempting to reconcile W5DXP & G3TXQ’s comparison of K and 52 mix ferrites #2
(Sevick 2001) discusses efficiency of transmission line transformers that use nickel-zinc ferrites in Chapter 11 “Materials and power ratings” applied to broad band baluns.
In Chapter 11 he reports a range of measurements of two different basic configurations, a 4:1 Ruthroff balun and a 4:1 autotransformer and uses nickel zinc ferrite cores of types that are no longer readily available (and none were the K and 52 mixes he is said to have recommended).
The types of transformers he built are ones where core flux (and so core loss) at low frequencies is approximately proportional to the quotient of voltage impressed across the input terminals and number of turns, so core losses can be decreased by reducing voltage and/or increasing turns. These are Voltage Baluns, see Definition: Current Balun, Voltage Balun.
By contrast, the flux (and so the core losses) in Current Baluns is proportional to the common mode current times turns, and in antenna systems, that cannot be simply calculated using back of the envelope ohms law (though pundits often do it), see Baluns – Rule 500.
So Seviks experiments and discussion are not directly applicable to Current Baluns, yet they are cited by manufacturers, sellers, and users as rationale for their designs using nickel-zinc ferrites for Current Baluns. Continue reading Sevick’s comments on selection of ferrite mix
Steve (G3TXQ) posted a graph comparing Cecil’s (W5DXP) measurements of two turns on FT240-52 and FT240-K.
It is interesting to reconcile the #52 curves with Fairrite’s datasheets. A simple reconciliation is to compare results at the frequency where µ’ and µ” curves cross over. Continue reading Attempting to reconcile W5DXP & G3TXQ’s comparison of K and 52 mix ferrites
Among forum experts, there are ready recommendations for the ideal ferrite material (or mix) for a balun, often without knowing any detail of the application.
The ‘magic’ mixes include K. Perhaps they are devotees of Sevick.
Over some years I have searched for manufacturer’s data on K mix, and found only two references:
Problem is that Ferronics µi is 125 against Amidon’s 290… so their K materials are different.
One has hoped that an interested competent person might have made measurements of some samples from Amidon to give full characteristic curves, it isn’t that hard. Continue reading Ferrite K mix