Pawsey Balun on an asymmetric load – bench load simulation

The Pawsey Balun (or Pawsey Stub) is described as a device for connecting an unbalanced feed to a balanced antenna.

Pawsey Balun on an asymmetric load reported model results in an asymetric dipole antenna, and showed very high common mode feed line current.

This article looks at two test bench configurations modelled in NEC.

The configurations are of a horizontal Pawsey balun for 7MHz constructed 0.1m over a perfect ground plane. The ‘balanced’ terminals are attached to the ground plan by two short 0.1m vertical conductors which are loaded with 33 and 66Ω resistances. At the other end, the horizontal transmission line is extended by two different lengths and connected to the ground plane using a 0.1m vertical conductor. The two extension lengths are almost zero and a quarter wavelength.

Zero extension

The total horizontal length from the ‘balanced terminals’ to the grounded end of the transmission line is a quarter wavelength for the Pawsey balun and a further 20mm making approximately a quarter wavelength in total.

Above is a plot of current magnitude and phase from 4NEC2. The current on the two vertical conductors containing the 33 and 66Ω loads is quite different, and the product gives load voltages that are approximately equal in magnitude and opposite in phase. Continue reading Pawsey Balun on an asymmetric load – bench load simulation

Pawsey Balun on an asymmetric load

The Pawsey Balun (or Pawsey Stub) is described as a device for connecting an unbalanced feed to a balanced antenna.

Above is a diagram of a Pawsey Balun used with a half wave dipole (ARRL).

Whilst these have been quite popular with VHF/UHF antennas, the question arises as to how they work, and whether they are effective in reducing common mode current IIcm) for a wide range of load scenarios. Continue reading Pawsey Balun on an asymmetric load

Nagoya NA-771 2m/70cm antenna

Around 10 years ago, a friend gave me a Nagoya NA-771 2m/70cm antenna to suit hand held radios for the purpose of testing it. He had bought two of them on eBay for around $10 each.

These are often sold without specifications, but where specifications are given, VSWR is given as 1.5, though not stated as maximum so should perhaps be read as typical.

This article looks at 2m performance alone.

2008 purchase

Above is a VSWR sweep around the 2m band.
Continue reading Nagoya NA-771 2m/70cm antenna

Measuring balun common mode impedance – #3

A correspondent having read my series Measuring balun common mode impedance – #1 related difficulties with his Rigexpert AA-230Zoom.

The articles showed some techniques for measuring common mode impedance of a current balun.

The following examples are of a test choke wound on a BN43-202 binocular core, and the results are quite similar to what might be expected of a broadband HF current balun. The measurements were made with a Rigexpert AA-600.

Above, the measurement result using RigExpert’s newest software Antscope2. Continue reading Measuring balun common mode impedance – #3

Small common mode choke for analyser antenna measurements using 2843000202 (BN43-202)

The project is design, implementation and test of a small common mode choke for use with an analyser for antenna measurements.

The choke must have medium to high Zcm from 1 to 30MHz. It is intended to be used with analysers supporting SOL calibration, so effectively any impedance transformation within the fixture is compensated and the reference plane is the load side terminals of the device.

The candidate core is a low cost #43 binocular ferrite core that is fairly easy to obtain.

Above is a first pass check of the likely Zcm at 1.8MHz using a Fair-rite 2843000202 (BN43-202) binocular core. These chokes have relatively low self resonance frequency so a value for Cs is supplied that delivers self resonance at around 5MHz. Zcm at 1.8MHz needs 8-9t, 8.5t will be used (ie the twisted pair enters one end of the binocular and leaves the other end for convenient layout). (8.5t is not strictly correct, but it is a close approximation in this case.)
Continue reading Small common mode choke for analyser antenna measurements using 2843000202 (BN43-202)

Equivalent noise bandwidth – IC-7300 CW Rx Filter2 – (500Hz sharp)

For a lot of experiments, knowledge of the Equivalent Noise Bandwidth (ENB) of a receiver is necessary. The ENB is the bandwidth of an ideal rectangular filter with the same gain as some reference frequency.

Though filters are often specified in terms of bandwidth at x dB down, that metric is of relatively little value, the x is often 6dB but not always, the filters depart significantly from ideal or even common response.

In brief, a white noise source is connected to the receiver input, Filter2 (nominal 500Hz bandwidth sharp response) selected and set to standard PBT, and the audio output captured on a PC based audio spectrum analyser, Spectrogram 16 in this case.

Spectrogram is set to integrate over 30s to average the variations due to the noise excitation. The resulting graph and text spectrum log are saved.

The method is explained in detail at Measure IF Bandwidth.

Above is the spectrum plots, as receivers go this is relatively flat.
Continue reading Equivalent noise bandwidth – IC-7300 CW Rx Filter2 – (500Hz sharp)

Equivalent noise bandwidth – IC-7300 SSB Rx Filter2 – (2400Hz sharp)

For a lot of experiments, knowledge of the Equivalent Noise Bandwidth (ENB) of a receiver is necessary. The ENB is the bandwidth of an ideal rectangular filter with the same gain as some reference frequency, 1kHz is usually specified for SSB telephony receiver sensitivity measurement.

Though filters are often specified in terms of bandwidth at x dB down, that metric is of relatively little value, the x is often 6dB but not always, the filters depart significantly from ideal or even common response.

In brief, a white noise source is connected to the receiver input, Filter2 (nominal 2400Hz bandwidth sharp response) selected and set to standard PBT, and the audio output captured on a PC based audio spectrum analyser, Spectrogram 16 in this case.

Spectrogram is set to integrate over 30s to average the variations due to the noise excitation. The resulting graph and text spectrum log are saved.

The method is explained in detail at Measure IF Bandwidth.

Above is the spectrum plots, as receivers go this is relatively flat, lacking the usual tapering off above 1kHz (a technique to cheat on sensitivity specs).
Continue reading Equivalent noise bandwidth – IC-7300 SSB Rx Filter2 – (2400Hz sharp)

Geometry factors for some common Fair-rite binocular ferrite cores

Designing with some common Fair-rite binocular ferrite cores can be frustrating because different parameters are published for different material types, and some are controlled for different parameters.

An approach is to derive the key geometry parameter from the published impedance curves and published material complex permeability curves.

For example, the above curves for a 2843002402 (also common known as a BN43-2402) were digitised and iteratively Calculate ferrite cored inductor (from Al) used for find the value of Al that gives the observed value for Z at 10MHz on the chart above. Continue reading Geometry factors for some common Fair-rite binocular ferrite cores

A symmetric compensation stub using coax

A low Insertion VSWR high Zcm Guanella 1:1 balun for HF – more detail #3 discussed compensation of the Insertion VSWR response of a balun which in that case was wound with coax.

A correspondent wrote of his project with a Guanella 4:1 balun where each pair was wound with a pair of insulated wires, and importantly the output terminals are free to float as the load demands. A Guanella 1:1 balun wound in the same way has the same characteristic.

To preserve balun choking impedance, it is best to preserve balun symmetry, and the use of a short open circuit coaxial stub across the output terminals for InsertionVSWR compensation introduces some asymmetry.

An alternative construction with coaxial cable that is more symmetric is shown above. Continue reading A symmetric compensation stub using coax

Measuring trap resonant frequency with an antenna analyser – measurement of a real trap

Finding the resonant frequency of a resonant circuit such as an antenna trap is usually done by coupling a source and power sensor very loosely to the circuit.

 

Above is Fig 1, a diagram from the Rigexpert AA35Zoom manual showing at the left a link (to be connected the analyser) and the trap (here made with coaxial cable).

Above is the trap measured, the wires were connected as a bootstrap trap as in Fig 1. The coupling link is a 60mm diameter coil of 2mm copper directly mounted on the AA-600 connector, and it is located coaxially with the trap and about 10mm from the end of the trap.

Above is the ReturnLoss plot of the trap very loosely coupled to the AA-600.

Of course this technique will not work on a trap that is substantially enclosed in a shield that prevents magnetic coupling. Note also that many traps used in ham antennas are simply a coil wound on an insulating rod and each end connected to the adjacent tubing, possibly with an overall aluminium tube that may or may not be bonded to the element tube at one end. The latter really become part of the element and measurement separate to the element is not simply translated to in-situ.

Equivalent circuit / simulation

The inductor has previously been carefully measured to be 3.4µH. We can calibrate a model of the coupled coils to the observed resonant frequency and ReturnLoss.

Above, the equivalent circuit. We can calculate the flux coupling factor k from the model, it is 2.3% so this is very loosely coupled to avoid pulling the resonant frequency high.

Above is the simulated ReturnLoss response over the same frequency range as measured.

Conclusions

It is practical to measure the resonant frequency of a trap by loosely inductively coupling an antenna analyser, depending on the structure of the trap and the capability of the analyser.

Practical measurements can be explained with a theoretical model of the measurement setup.