Small untuned loop for receiving – a design walk through #1 arrived at a design concept comprising an untuned small loop loaded with a broadband amp with input Z being a constant resistive value and with frequency independent gain and noise figure.
In that instance, the design approach was to find a loop geometry that when combined with a practical amplifier of given (frequency independent) NoiseFigure (NF), would achieve a given worst case S/N degradation (SND). Whilst several options for amplifier Rin were considered in the simple analytical model, the NEC mode of the antenna in presence of real ground steered the design to Rin=100Ω.
A question that commonly arises is that of Rin, there being two predominant schools of thought:
- Rin should be very low, of the order of 2Ω; and
- Rin should be the ‘standard’ 50Ω.
Each is limiting… often the case of simplistic Rules of Thumb (RoT).
Let’s plot loop gain and antenna factor for two scenarios, Rin=2Ω and Rin=100Ω (as used in the final design) from the simple model of the loop used at Small untuned loop for receiving – a design walk through #2.
Above, loop gain is dominated by the impedance mismatch between the source with Zs=Rr+Xl and the load being Rin. We can see that the case of Rin=100Ω achieves higher gain at the higher frequencies by way of less mismatch loss than the Rin=2Ω case. Continue reading Small untuned loop for receiving – a design walk through #4