## QRP quarterly on small transmitting loop efficiency

A correspondent recently wrote regarding the theory expounded in (Findling et al 2012), and their measurements and performance predictions of the AlexLoop Walkham, Portable Magnetic Loop Antenna by PY1AHD.

The authors give a formula for lossless Q (to mean no loss other than by radiation) without explanation or justification. The formula is wrong, possibly a result of slavish acceptance of Hart’s two factor incorrectly applied (see Duffy 2015, and Antennas and Q). This error feeds into an optimistic estimate of antenna efficiency.

## Analysis of measurement data

(Findling et al 2012) presents a table of measured half power bandwidth for the Alexloop.

Taking the 40m case, lets calculate to Q for a lossless loop, Qrad in Findling’s terms. Note that Q for the lossless loop is about half that of Findling. Continue reading QRP quarterly on small transmitting loop efficiency

## NH7RO 7-foot diameter QRO STL for 40M

NH7RO describes his loop project at Building a 7-foot diameter QRO STL for 40M in my HOA backyard.

The loop appears to be made from 7/8″ copper tube, and is 7′ in diameter. He estimates its efficiency to be 66% and initially reports I’ve got it less than 4 feet above ground yet it tunes flat to 1.1>1 with roughly 10kHz bandwidth.. Curiously, 10kHz is the result calculated by AA5TB’s spreadsheet, though I have written elsewhere it is deeply flawed (Small transmitting loop calculators – a comparison).

Let us assume that these figures are correctly reported, and that the unqualified bandwidth means the half power bandwidth of a matched loop.

We can estimate the efficiency of a Small Transmitting Loop (STL) in free space. Before getting excited about the results, let us question the validity of the model. There are three important factors that question the validity of the model:

• bandwidth;
• size of the loop; and
• proximity to ground.

## Review of Dunlavy’s STL patent gain claims

(Dunlavy 1967) sets out his description of a wide range tunable transmitting loop antenna and makes a broad efficiency claim of better than 30% (-5.3dB) for his system.

Minimum efficiencies of 30 percent are attainable with practical designs having a diameter of only 5 feet for 3-15 Megahertz coverage.

In a context where extravagant claims are often made for such antennas, his claims warrant review.

Dunlavey gives an example embodiment in approximate terms.

Practical loop designs for use in the range of 2-30 megahertz will utilize copper or aluminum tubular conductors having a diameter of 3 inches to 5 inches. A typical design for 3 to 15 Megahertz operation would be constructed as shown in FIG. 2 with a primary loop 4 having a diameter of about 5 feet and tuned by a high voltage vacuum capacitor 5 having a capacitance range of approximately 25 to l,000 picofarads. The tuned primary loop should be made of aluminum or
copper tubing having a diameter of approximately 4 inches-5 inches. The diameter of the feed loop, which is designated by the reference number 6, for 50 ohms impedance should be approximately l0 inches.

Lets take a perimeter of 4.8m (dia=5′) and copper conductor diameter of 100mm (4″) as the dimensions for further exploration. Above, Dunlavy’s Figure 5 gives gain relative to a monopole above perfectly conducting ground. Continue reading Review of Dunlavy’s STL patent gain claims

## Some thoughts on a two turn small transmitting loop

Small transmitting loops (STL) are very popular with hams, and a fashion is developing for N turn loops. This article lays out some thoughts on a 2 turn STL.

Firstly, to the meaning of “small transmitting loop’. There are a range of definitions used, and they mostly centre around the concept of a size sufficiently small that current is approximately uniform. The issue is about the meaning of sufficiently. Accuracy of estimation of radiation resistance of small transmitting loops sets out a rationale for a single turn loop for criteria that perimeter<λ/10.

This article will compare NEC-4.2 models of loops with the following key parameters:

• 1m diameter (the loop perimeter is 0.07λ);
• 20mm copper conductor;
• frequency is nominally 7.1MHz;
• 16 segments per turn
• when not specified as in free space, the loop centre is 1m above ‘average’ ground (σ=0.005, εr=13);
• the loop is directly fed in the middle, opposite to the tuning capacitor position, cap down;
• pitch is 0.15m.

The model is sensitive to all these parameters. Continue reading Some thoughts on a two turn small transmitting loop

## Review of N6PAA’s 40m STL

(N6PAA nd) describes several small transmitting loops (STL) and gives some meaningful performance measurements. It is rare to see such measurements and he is to be congratulated.

This review focusses on his 40m STL.

The loop is a circle of perimeter 3.83m which at 7.1MHz is 0.091λ which is at the top end of the strictest criteria for an STL, the common formula for radiation resistance Rr of a STL fail for perimeter above about 0.1λ (see Accuracy of estimation of radiation resistance of small transmitting loops). It appears from his pics that the bottom of the loop is about 1.5m above real ground, so we expect a significant ground loss resistance component in Rtotal.

N6PAA gives a measured VSWR curve for the matched antenna, and the VSWR=3 bandwidth as scaled from the graph as 20kHz, from which we can calculate the half power bandwidth and eventually, efficiency. There is some suggestion that some measurements were taken indoors, this analysis assumes that the relevant measurements were taken outdoors as pictured. Continue reading Review of N6PAA’s 40m STL

## Review of KK5JY’s 40m STL

(Roberts 2010) describes several small transmitting loop (STL) and gives some meaningful performance measurements. It is rare to see such measurements and he is to be congratulated.

This review focusses on his 40m STL.

The loop is a circle of perimeter 4.3m which at 7.1MHz is 0.102λ which is at the top end of the strictest criteria for an STL, the common formula for radiation resistance Rr of a STL fail for perimeter above about 0.1λ (see Accuracy of estimation of radiation resistance of small transmitting loops). It appears from his pics that the bottom of the loop is about 2m above real ground, so we expect a significant ground loss resistance component in Rtotal.

Roberts gives the VSWR=2 bandwidth as 5.4kHz, which if we assume that it was adjusted for a perfect match mid band, we can calculate the half power bandwidth and eventually, efficiency. Continue reading Review of KK5JY’s 40m STL

## Trial of prototype stand alone GPS logger

An upcoming project calls for a stand alone GPS logger.

The requirement is for a GPS stream that allows correction using RTKLIB, but this trial is of a lesser GPS as proof of concept. Above, the equipment consists here of a Ublox NEO-6M based GPS module (~A\$15 incl on eBay) at left, an Openlogger (~A\$15 incl post on eBay) at right, and a 12V-5V converter (~A\$7 from Hobbyking) at bottom. The latter is a 5A converter, way overkill, but it was on hand. The GPS module has a 3V regulator on board for the NEO-6M chip.
Continue reading Trial of prototype stand alone GPS logger

## Reconciling W5QJR’s loop formulas

Ted Hart inspired interest in loops for transmitting applications with his article “Small, high efficiency loop antennas” (Hart 1986).

He included a table of recommended designs, the following is an extract of the table rows relating to an octagonal loop with perimeter=20′ (6.1m). The tube specified was 3/4 copper pipe which has an OD of 22mm. Continue reading Reconciling W5QJR’s loop formulas

## Reconciliation of field strength to efficiency calculator with Boswell’s loop measurements

(Boswell et al 2005) discussed a small transmitting loop (STL) and offered predictions and measurements of performance.

Boswell’s loop is 1m diameter of 22mm diameter copper tube. Above, Fig 6 from Boswell shows his prediction of the field strength of a 100% efficient loop at several distances, and measured field strength. He calculated efficiency from the difference between predicted lossless and measured. Continue reading Reconciliation of field strength to efficiency calculator with Boswell’s loop measurements

## On ignoring capacitor losses in Small Transmitting Loops

There are a host of design tools for Small Transmitting Loops, spreadsheets, online calculators and conventional applications you download and run on your PC.

Almost all ignore capacitor loss… and I say almost so that I am not wrong, I have never seen one of these tools that does include capacitor loss.

NEC study of Small Transmitting Loop Q vs frequency contained a graph of the elements of feed point resistance from and NEC-4.2 model for a small loop. Key parameters are:

• Octagonal loop of 20mm copper with area equal to that of a 1m diameter circle, loop perimeter=0.104λ at 10MHz;
• centre height=2m;
• Qcap=2000;
• ground=0.007/17; and
• freq=1-10MHz.

This analysis only extends up to 10MHz, because for perimeter>λ/10, the formulas used by most of these simple calculators are in error for other reasons. Above, the four elements on log scale. Continue reading On ignoring capacitor losses in Small Transmitting Loops