Desk review of the AAA-1C as an active dipole antenna

The AAA-1C is an amplifier for small receiving antennas by LZ1AQ. The amplifier is designed for use with one or two small loops or a short dipole (possibly comprising two small loops).

The datasheet contains some specifications that should allow calculation of S/N degradation (SND) in a given ambient noise context (such as ITU-R P.372). Of particular interest to me is the frequency range 2-30MHz, but mainly 2-15MHz.

The specifications would appear to be based on models of the active antenna in free space, or measurements of the device using a dummy antenna. So, the challenge is to derive some equivalent noise estimates that can be compared to P.372 ambient noise, and with adjustment for the likely effects of real ground.

Key specifications:

  • plot of measured output noise of the amplifier, and receiver noise in 1kHz ENB;
  • Antenna Factor (AF) from a simulation.

Above is the published noise measurements at the receiver input terminals. The graph was digitised and then a cubic spline interpolation used to populate a table. Continue reading Desk review of the AAA-1C as an active dipole antenna

Small untuned loop for receiving – a design walk through #4

Small untuned loop for receiving – a design walk through #1 arrived at a design concept comprising an untuned small loop loaded with a broadband amp with input Z being a constant resistive value and with frequency independent gain and noise figure.

In that instance, the design approach was to find a loop geometry that when combined with a practical amplifier of given (frequency independent) NoiseFigure (NF), would achieve a given worst case S/N degradation (SND). Whilst several options for amplifier Rin were considered in the simple analytical model, the NEC mode of the antenna in presence of real ground steered the design to Rin=100Ω.

A question that commonly arises is that of Rin, there being two predominant schools of thought:

  • Rin should be very low, of the order of 2Ω; and
  • Rin should be the ‘standard’ 50Ω.

Each is limiting… often the case of simplistic Rules of Thumb (RoT).

Let’s plot loop gain and antenna factor for two scenarios, Rin=2Ω and Rin=100Ω (as used in the final design) from the simple model of the loop used at Small untuned loop for receiving – a design walk through #2.

Above, loop gain is dominated by the impedance mismatch between the source with Zs=Rr+Xl and the load being Rin. We can see that the case of Rin=100Ω achieves higher gain at the higher frequencies by way of less mismatch loss than the Rin=2Ω case. Continue reading Small untuned loop for receiving – a design walk through #4

Small untuned loop for receiving – a design walk through #3

Small untuned loop for receiving – a design walk through #1 arrived at a design concept comprising an untuned small loop loaded with a broadband amp with input Z being a constant resistive value and with frequency independent gain and noise figure.

Small untuned loop for receiving – a design walk through #2 developed a simple spreadsheet model of the loop in free space loaded by the amplifier andperformed some basic SND calculations arriving at a good candidate to take to the next stage, NEC modelling.

The simple models previously used relied upon a simple formula for predicting radiation resistance Rr in free space, and did not capture the effects of proximity of real ground. The NEC model will not be subject to those limitations, and so the model can be run from 0.5-30MHz.

The chosen geometry was:

  • loop perimeter: 3.3m;
  • conductor diameter: 20mm;
  • transformer ratio to 50Ω amplifier: 0.7; and
  • height of the loop centre: 2m;
  • ground: average (σ=0.005 εr=13).

NEC-5.0 model results

The effect of interaction with nearby real ground is to modify the free space radiation pattern. The pattern at low frequencies has maximum gain at the zenith, and above about 15MHz the pattern spreads and maximum gain is at progressively lower elevation. For the purposes of a simple comparison, the AntennaFactor was calculated for external plan wave excitation at 45° elevation in the plane of the loop.

Above is a plot of loop Gain and AntennaFactor at 45° elevation along the loop axis. The frequency range is 0.5-30MHz as the NEC model is not limited by the simple Rr formula. Additionally there is some ‘ground gain’ of around 5dB due to lossy reflection of waves from the ground interface. Continue reading Small untuned loop for receiving – a design walk through #3

Small untuned loop for receiving – a design walk through #2

Small untuned loop for receiving – a design walk through #1 arrived at a design concept comprising an untuned small loop loaded with a broadband amp with input Z being a constant resistive value and with frequency independent gain and noise figure.

Loop amplifier

There have been many credible designs of loop amplifiers of gain in the region of 25+dB and NoiseFigure NF around 2dB. So lets work with that as a practical type of amplifier, though we will not commit to input Z just yet.

I might note that a certain active loop manufacturer claims NF in the small tenths of a dB, but it appears they needed to invent their own method of measurement… when questions the credibility of their claims.

Let’s calculate the NF of a cascade of the NF=8dB receiver, coax with loss of 2dB and a loop amplifier with NF=2dB and Gain=25dB.

The NF looking into the loop amplifier is 2.08dB. Continue reading Small untuned loop for receiving – a design walk through #2

Small untuned loop for receiving – a design walk through #1

This series of articles develops a simple design for a small receive only broadband loop for the frequency range 0.5-10MHz, and to deliver fairly good practical sensitivity.

Fairly good practical sensitivity is to mean that the recovered S/N ratio is not much worse than the off-air S/N ratio. Let’s quantify not much worse as the Signal to Noise Degradation (SND) statistic calculated as \(SND=10 log\frac{N_{int}+N_{ext}}{N_{ext}}\), and lets set a limit that \(SND<3 dB\).

Since Next is part of the criteria, let’s explore it.

External noise

ITU-R P.372 gives us guidance on the expected median noise levels in a range of precincts. Since most hams operate in residential areas, you might at first think the Residential precint is the most appropriate, but ambient noise more like the Rural precinct is commonly observed in residential areas, so let’s choose Rural as a slightly ambitious target.

Above is Fig 39 from ITU-R P.372-14 showing the ambient noise figure for the range of precincts. Readers will not that that are all lines sloping downwards with increasing frequency, so the external noise floor is greater at lower frequencies in this range. Continue reading Small untuned loop for receiving – a design walk through #1

A mount for the coax relay driver development prototype

I was recently revising the code for the Coax Relay Driver to use a PIC16F1827 chip, and thought a good improvement would be a board that held the prototype electronics and the pulse latching relay together as an assembly.

Above is the design from Fusion360 to be cut from 3mm clear PVC sheet on the CNC router. Continue reading A mount for the coax relay driver development prototype

Calculation of impedance of a ferrite toroidal inductor – from first principles

A toroidal inductor is a resonator, though it can be approximated as a simple inductor at frequencies well below its self resonant frequency (SRF). Lets take a simple example, a ferrite toroid of rectangular cross section.

From the basic definition \(\mu=B/H\) we can derive the relationship that the flux density in the core with current I flowing through N turns is given by \(B=\frac{\mu_0 \mu_r N I}{2 \pi r}\). Continue reading Calculation of impedance of a ferrite toroidal inductor – from first principles

NanoVNA – measuring cable velocity factor – demonstration – coax

The article nanoVNA – measuring cable velocity factor discussed ways of measuring the velocity factor of common coax cable. This article is a demonstration of one of the methods, 2: measure velocity factor with your nanoVNA then cut the cable.

Two lengths of the same cable were selected to measure with the nanoVNA and calculate using Velocity factor solver. The cables are actually patch cables of nominally 1m and 2.5m length. Importantly they are identical in EVERY respect except the length, same cable off the same roll, same connectors, same temperature etc.

Above is the test setup. The nanoVNA is OSL calibrated at the external side of the SMA saver (the gold coloured thing on the SMA port), then an SMA(M)-N(F) adapter and the test cable. The other end of the test cable is left open (which is fine for N type male connectors). Continue reading NanoVNA – measuring cable velocity factor – demonstration – coax

nanoVNA – measuring cable velocity factor

With the popularity of the nanoVNA, one of the applications that is coming up regularly in online discussion is the use to measure velocity factor of cable and / or tuning of phasing sections in antenna feeds.

‘Tuning’ electrical lengths of transmission line sections

Online experts offer a range of advice including:

  1. use the datasheet velocity factor;
  2. measure velocity factor with your nanoVNA then cut the cable;
  3. measure the ‘tuned’ length observing input impedance of the section with the nanoVNA; and
  4. measure the ‘tuned’ length using the nanoVNA TDR facility.

All of these have advantages and pitfalls in some ways, some are better suited to some applications, others may be quite unsuitable.

Let’s make the point that these sections are often not highly critical in length, especially considering that in actual use, the loads are not perfect. One application where they are quite critical is the tuned interconnections in a typical repeater duplexer where the best response depends on quite exact tuning of lengths. Continue reading nanoVNA – measuring cable velocity factor

PllLdr application – ATTiny44 & AD9833 in Codan 6801

The Codan 6801 is an older SSB transceiver using a single crystal per simplex SSB channel, for up to 10 channels. The channel switch selects the crystal and also a band pass filter for that channel.

The cost of crystals to populate the 6801 runs towards $1000. A recent project implemented a functional replacement for the crystals using PllLdr and an inexpensive DDS module.The cost of crystals to populate the 6801 runs towards $1000. A recent project implemented a functional replacement for the crystals using PllLdr and an inexpensive DDS module suitable for use in the ham bands.

Above, the modified radio with 8 channels on ham bands (this radio is missing the last two channel filters, so it is only equipped internally for 8 channels). Continue reading PllLdr application – ATTiny44 & AD9833 in Codan 6801