nanoVNA-H – measuring an inductor – is it a no-brainer?

Let’s explore measurement of a test inductor with the nanovna.

Above is the test inductor, enamelled wire on an acrylic tube.

An online expert’s advice make this task look like a no-brainer:

For a 100 nH inductor you are probably using an air wound coil so you won’t see that much change in inductance with frequency. However, inductors made with toroids will because the permeability of the core goes down with frequency.

So, this is an air cored inductor, permeability is approximately that of free space, a constant 4πe-7 independent of frequency. Nevertheless we will see that apparent inductance can change with frequency. Continue reading nanoVNA-H – measuring an inductor – is it a no-brainer?

nanoVNA-H – continuing USB-C repair

I have reported issue with the USB-C plug / socket arrangement on the nanoVNA-H.

It is very sensitive to any jiggling of the cable or connector, causing a reset of the nanoVNA which almost always means lost work. The supplied cable was a partial cause, but sadly the jack on the PCB is also faulty.

This has progressively gotten worse to the point the nanoVNA-H is unusable. I have had a replacement socket on order for months from China where public health problems are causing chaos, it has only just shipped so could be some months yet.

I do realise that this is replacing cheap Chinese junk with cheap Chinese junk.

Anyway… it finally arrived after many months. A pack of 10 sockets cost $2.30 incl shipping, so it gives one a fair idea of how cheap the low grade connector that was used would have come.

Above, the replacement USB-C socket soldered in to the board without removing the display. The SB1 pad lifted of the board during removal of the old socket, no connection is made to it, so no harm done. Continue reading nanoVNA-H – continuing USB-C repair

nanoVNA-H – continuing USB-C woes #2

I have reported issue with the USB-C plug / socket arrangement on the nanoVNA-H.

It is very sensitive to any jiggling of the cable or connector, causing a reset of the nanoVNA which almost always means lost work. The supplied cable was a partial cause, but sadly the jack on the PCB is also faulty.

This has progressively gotten worse to the point the nanoVNA-H is unusable. I have had a replacement socket on order for months from China where public health problems are causing chaos, it has only just shipped so could be some months yet.

I do realise that this is replacing cheap Chinese junk with cheap Chinese junk.

Replacement of the USB-C socket will be difficult, fortunately it is the 12/16 pin version rather than the full 24 pins… but I do wonder at the wisdom of using a USB-C over the proven micro USB connector.

Above, the old socket has been removed from the board. One pad came off with the socket, but it is the unused SB1 pad. Of greater concern is whether the slight movement of the some other pads might cause conductor cracking. I do see signs that a couple of pins might not have tinned the full pad area, a hint of low quality board fabrication and a possible contribution to intermittent connection.

An alternate recovery is to cut the end off a USB cable and permanently wire it directly into the board.

So for now, the nanoVNA-H awaits parts again.

nanoVNA – VSWR in terms of 400Ω

I was asked whether the nanoVNA can display VSWR in terms of 400Ω or some other arbitrary impedance.

Some antenna analysers and VNAs support display of results in terms of some specified impedance other than 50Ω, sometimes only a limited fixed set.

The direct answer to the question is “probably no, not directly on the ‘original’ nanoVNA today”, there are many firmware forks and many PC clients for nanovna, and now many significantly hardware versions appearing. Things may change.

However, if you can save a set of impedance measurements, they can be converted to VSWR relative to some other impedance reference.

An example

At Implementation of G5RV inverted V using high strength aluminium MIG wire – impedance measurements a set of impedance measurements made with a Rigexpert AA600 is presented.

A similar set of measurements could be made with a standalone nanoVNA and saved, but given that it is such a clumsy device and its USB socket has become so unreliable, I will not repeat the measurement but use the data used for the article above.

So we have a table of frequency and (R,X) measured looking into a ‘real’ 450Ω feed line, so we will calculate wrt 450Ω but we could use any reference.

Above is a plot or (R,X) looking into the feed line. Continue reading nanoVNA – VSWR in terms of 400Ω

Reinforcement of nanoVNA-H connectors – performance discussion

At Strength of reinforcement of nanoVNA-H connectors I showed a method I used to reinforce the SMA connectors to reduce the flexing of the PCB when the SMA connectors were torqued to specification for reliable measurement.

This has been commented on by online experts stating that Hugen, the designer of this board, posted notes about his efforts to keep the grounds for tx and rx port circuits isolated to some extent.

Opinion by some is that the modification I performed above which electrically bonds the two connectors through a brass bar of about 60mm length is likely to significantly degrade performance. Continue reading Reinforcement of nanoVNA-H connectors – performance discussion

nanoVNA-H – continuing USB-C woes

I have reported issue with the USB-C plug / socket arrangement on the nanoVNA-H.

It is very sensitive to any jiggling of the cable or connector, causing a reset of the nanoVNA which almost always means lost work.

Having tried a number of different cables that have worked reliably on other devices, I initially thought there was little difference.

I did have a good response to jetting plug and jack with IPA, but the effects are shortlived.

This brings me to consider whether the connector is degrading making debris that makes for unreliable contact, or whether this is too little spring pressure in the plug.

Above is a view into the supplied USB-C plug. The pic has been taken with care to line up the die parting marks at back and front of the connector, so the view is in line with the connector axes. Continue reading nanoVNA-H – continuing USB-C woes

Measuring coaxial cable loss by reflection with a directional wattmeter

At Measuring coaxial cable loss by reflection with a VNA I discussed measuring terminated coax cable loss by reflection with an VNA, and you might ask the question can it be done with a scalar network analyser, return loss bridge, or directional wattmeter, all of which provide a measure of the amplitude of reflection wrt some reference impedance.

This article explores using a Bird 43 directional wattmeter to measure line loss in a similar scenario. We will use 6m of Belden 8359 (RG58A/U) @ 3.6MHz.

Expectation

A short digression, what is the specification Matched Line Loss (MLL) at 3.6MHz? Using TLLC we get 0.171dB, that is our expectation.

Return Loss of SC section

(Bird 2004) gives the following advice.

Line loss using open circuit calibration: The high directivity of elements can be exploited in line loss measurements, because of the equality of forward and reflected power with the load connector open or short circuited. In this state the forward and reflected waves have equal power, so that φ = 100% and ρ = ∞.
Open circuit testing is preferred to short circuit, because a high quality open circuit is easier to create than a high quality short. To measure insertion loss, use a high quality open circuit to check forward and reverse power equality, then connect an open-circuited, unknown line to the wattmeter. The measured φ is the attenuation for two passes along the line (down and back). The attenuation can then be compared with published data for line type and length (remember to halve Ndb or double the line length to account for the measurement technique).

This also contains the hoary old chestnut that a good OC termination is hard to achieve, but this author’s experience of measurement with modern VNAs is not consistent with Bird’s assertion.

So lets do a theoretical simulation of the Bird 43 applied to this problem.

Lets say we connect a source to the line section with a short circuit (SC) termination, and that the Bird 43 reads Pfwd=90W, and we read Pref=78W, we can calculate return loss \(RL=10 \cdot log_{10}\frac{P_{fwd}}{P_{ref}}=0.65dB\), so RL/2=0.65/2=0.325dB.

Continue reading Measuring coaxial cable loss by reflection with a directional wattmeter

Measuring coaxial cable loss by reflection with a VNA

At Measuring coaxial cable loss with a voltmeter I discussed measuring terminated coax cable loss with an RF voltmeter, and it had some real practical limitations.

This article explores using a nanoVNA to measure line loss in a similar scenario. We will use 6m of Belden 8359 (RG58A/U) @ 3.6MHz.

The same technique could be used with a quality antenna analyser.

Expectation

A short digression, what is the specification Matched Line Loss (MLL) at 3.6MHz? Using TLLC we get 0.171dB, that is our expectation.

Return Loss of SC section

A common method proposed is to measure Return Loss (RL) of a section with load end RL=0dB and halve it. Many experts advise that the section should be terminated in a short circuit (S) because short circuits are more reliable than open circuits. So let’s get cracking.

Above is measured |s11| using a nanoVNA with recent OSL calibration from 1-30MHz. |s11| @ 3.6MHz is by eye -0.651dB, RL=-|S11|, so RL/2=0.651/2=0.325dB. Continue reading Measuring coaxial cable loss by reflection with a VNA

Strength of reinforcement of nanoVNA-H connectors

The nanoVNA-H connectors are end launch PCB connectors and they have a decidedly spongy feel as 1Nm torque is approached. This was due to flexing of the PCB and was likely to lead to track cracks in the longer term.

Specs for SMA connectors range from minimum of 0.2Nm torque to maximum of 1.7Nm, but 0.6Nm and 1.0Nm are common commercial practice.

Some nanoVNA sellers state:

As the SMA ports are made of cast copper, please not connect hard 50-7 / RG213 and other cables directly to the SMA ports through M-to-SMA connector to avoid damaging the SMA ports. You can use the included SMA cable to connect to the SMA port as shown in the picture below, and then use M to SMA connector.

Clearly Chinese Cheats, they will say anything to make a sale and anything to avoid commitment to quality. These connectors are very unlikely to be copper, but are likely to be a copper alloy: brass. What they also avoid in the above statement is claim for PCB damage due to flexure of the SMA connectors torqued to accepted industry torque for reliable connections and measurement.

Above is a pic of a modification to reinforce the connectors. This article sets out the analysis of just the solder joint within the cross section of the brass pieces.

A side effect is that this modification bonds the ground planes for the input and output parts of the nanoVNA via the brass bar where they have been kept isolated to some extent.

I should note that there has been much discussion online as to whether the noise floor of the nanoVNA is degraded by the shields fitted to the board, and various modifications to the shields. Some of this discussion proposes that the issue is mostly around the mixers and noise loops, and I note that in -H designs prior to v3.3, the mixer power supply was not adequately decoupled. It is possible that electrical connection of the SMA connectors in this way degrades noise performance at some frequencies. No significant change was observed in the noise floor of s11 or s21 channels from 1 to 300MHz (I don’t regard instrument performance to be good above 300MHz). I have not seen credible evidence of degradation of the nanoVNA-H v3.3 build.

If indeed bonding the two SMA connectors close to the instrument increases the noise floor or has other performance impacts as suggested, it questions whether the currents on the exterior of the coax influence measurement (which it should not) and it questions whether two port measurement fixtures or adapters should  be attached close to the nanovna.

(See also Reinforcement of nanoVNA-H connectors – performance discussion.)

At first, the strength of the butt soldered joint might seem a simple case of beam analysis where the beam is of cast solder of the same cross section l x w as the soldered joint. Continue reading Strength of reinforcement of nanoVNA-H connectors

nanoVNA-H – recovery

I often see reports that a nanoVNA has been ‘bricked’. The term seems to have become part of the vernacular of would be pros. The term ‘bricked’ certainly applies to electronics that can no longer be programmed through ‘ordinary means’ and is to all intents and purposes as useful as brick, but in most cases, the nanoVNA is recoverable.

The STM32F072 chip  used on the original nanoVNA has some features that make the firmware update process simple and robust, and difficult to mess up.

The normal way of doing a firmware update is using the DFU protocol from a PC over the USB interface. To use this, the device has to be “put into DFU mode”, this means that the chip is reset and started executing the bootloader in permanent system memory.

The concept of DFU is that normal client programs used with the device can easily be extended to include the DFU function as just another menu function of the client software. I am not aware of any nanoVNA client that does this.

So, you need to use a programming client, and for Windows a good choice is ST’s DfuSeDemo. You may need to convert the distributed file format using Dfu file manager from the same distribution, not all developers distribute a .dfu file.

There is a pin on the board, BOOT0, that must be held high during reset to enter the on-chip bootloader. Later firmware versions also provide a menu option to enter the bootloader, but if an attempted upgrade messes up the menu, you may need to use the BOOT0 pin bridged to the adjacent VDD pin while you power cycle the nanovna.

Above is the rear view of the board, and a jumper using pogo pins to bridge BOOT0 to VDD. Continue reading nanoVNA-H – recovery