Milton Moore’s power supply test

When I was a student at TAFE in 1970, a teacher, Milton Moore, explained why the lab power supplies that were used, Perini & Scott 30V 2A, were the largest power supplies given their modest capability.

He explained that they were almost student proof. He went on the classify students in three categories, the average students constituted the bulk, then there were the quite inept who damaged the best equipment by doing things that no one could have anticipated, and the very bright who sought to understand equipment and expose their weakness.

Milton explained that they tested these power supplies using the rat tail file and hacksaw blade test. One output terminal was attached to the rat tail file and the other to a hacksaw blade, the voltage and current were set to max and the rat tail file and hacksaw blade were rubbed together yielding a shower of sparks… and possibly smoke from the DUT.

At the time I was very interested in overcurrent protection of linear regulators, so this was especially interesting.

ua723 – the darling of power supply designers of the time

Lets look at the issue with the ua723, recently released at that time and appearing in lots of designs.

Above is a schematic from the ua723 datasheet. Rsc is the current sense resistor and it is chosen to develop 0.6V at the current limit, so for instance in a 20A power supply it would have a value of 0.6/20=0.03Ω. So, the current sense circuit presents a Thevenin equivalent circuit of Vth=Rsc*I and Rth=Rsc. Continue reading Milton Moore’s power supply test

Current regulation dynamics of Atten APS3005S

This article documents a simple test to ascertain whether the current regulation dynamics of are good enough to use for testing strings of LEDs as found in much modern lighting

Atten-hcctl00

The APS3005S is a linear bench top power supply 0-30VDC at 0-5A with adjustable voltage and current regulation… so called constant voltage and constant current modes.

A pair of 900mm long small gauge (0.5mm^2) hook up leads were used to apply a short circuit to the power supply, and current was set to 0.1A. The resistance and inductance of these leads will to some extent limit the peak current.

The short circuit was removed and the power supply set to 30V out.

The short was reapplied and the current captured with a current probe. The current probe calibration is 1mV/10mA.

Above, the peak current is 6680*0.1=66.8A, that is 668 times the set value. Continue reading Current regulation dynamics of Atten APS3005S

Programming a certain type of Chinese 315/433MHz EV1527 compatible remote relay

This article describes the programming sequences for a common Chinese 315/433MHz remote relay which works with the common EV1527 transmitter.

The EV1527 should not be confused with high security protocols, the transmitter has burned into it four fixed supposedly relatively unique codes (in a space of 1 million code possibilities) and sends the burned in code associated with the transmitter key each time it is operated. This should not be confused with rolling code systems such as KeeLoq. This information is not usually disclosed by sellers.

These are usually supplied with little or no instructions, or bad online translations that are quite misleading. I dare say sellers have refunded money in lots of cases due to user confusion about programming them or compatible transmitters. This information might assist owners to find a working solution.

Above is an example remote relay (~$3 on eBay), they are available with a number of channels and may look physically different but use the same or similar firmware. Note that though the relay on this one is rated at 10A AC, that rating is for resistive load and it is rated at 5A AC for an inductive load (PF=0.4). Continue reading Programming a certain type of Chinese 315/433MHz EV1527 compatible remote relay

Chinese wattmeter / power analyser fix

I bought a little wattmeter / power analyser with SB50 style plugs on it on eBay for about $20.

These devices have been common in the RC market for many years, and I have found them useful for a number of things but note that the input -ve lead is NOT directly connected to the output -ve lead, you cannot use them where the input -ve and output -ve are common.

 

The problems

Above is the promo pic. Of course they are not Anderson plugs, but clones. Continue reading Chinese wattmeter / power analyser fix

Normalised RMS voltage of a full wave phase controlled power waveform

The recent article Soldering iron – temperature control failure gave a plot of V’rms vs conduction angle for a simple full wave phase controlled AC waveform, and I have been asked to explain the derivation.

The phase controlled switch turns on at some delayed time from the zero crossing of the AC waveform, and conducts until the next zero crossing.

With the simplest circuits, there is a practical limit to the achievable stable range of conduction angle, and a minimum of about 50° to a maximum of about 160° is typical.

The RMS voltage is the square root of the mean of the square of the instantaneous voltage. We can write an expression for the normalised RMS voltage as a function of conduction angle θ. Continue reading Normalised RMS voltage of a full wave phase controlled power waveform

Soldering iron – temperature control failure

I wanted to modify a soldering iron to insert brass threaded inserts into holes drilled in plastic parts, and for this application looked to eBay for an inexpensive temperature controlled soldering iron that could be adjusted down to around 200°.

Well first check was of its temperature when set to 200°.

Ouch, that is a fail. The Chinese cheats have supplied product that does not comply with its description. Continue reading Soldering iron – temperature control failure

CNC6040 router project – cut of enclosure for grbl_ESP32

One of the intended applications of the CNC router is to cut openings in metal and plastic enclosure boxes boxes for things like LCD displays, tactile button switches, connectors etc.

First ‘production’ job was a box to contain the grbl_ESP32 gcode interpreter, part of the CNC router if you like.

This module is the grbl_ESP32 box in the block diagram above. Continue reading CNC6040 router project – cut of enclosure for grbl_ESP32