This article documents an initial checkout of a Baofeng GT-5TP.
Above is the GT-5TP with its supplied antenna. Continue reading Baofeng GT-5TP – first impressions
This article documents an initial checkout of a Baofeng GT-5TP.
Above is the GT-5TP with its supplied antenna. Continue reading Baofeng GT-5TP – first impressions
A prototype broadband transformer for a End Fed Half Wave operated at fundamental and first, second, and third harmonic is presented.
The transformer comprises a 32t of 0.65mm enamelled copper winding on a FT240-43 ferrite core, tapped at 4t to be used as an autotransformer to step down a load impedance of around 3300Ω to around 50Ω. The winding layout is unconventional, most articles describing a similar transformer seem to have their root in a single design.
Continue reading End Fed Half Wave matching transformer – 80-20m
In a discussion about using a 40m centre fed half wave dipole on 80m, the matter of feed line loss came up and online expert KM1H offered:
Use this to help make up your mind. Add it to the normal coax loss. http://www.csgnetwork.com/vswrlosscalc.html
This is to suggest that the feed line loss under standing waves can be calculated with that calculator.
He then berates and demeans a participant for commenting on his recommendation, bluster is par for the course in these venues.
The calculator in question states this calculator is designed to give the efficiency loss of a given antenna, based on the input of VSWR (voltage standing wave ratio) and other subsequent factors
.
This is a bit wishy washy, efficiency loss
is not very clear. The usual meaning of efficiency is PowerOut/PowerIn, and the usual meaning of loss is PowerIn/PowerOut, both can be expresssed in dB: LossdB=10*log(Loss) and EfficiencydB=10*log(Efficiency). Continue reading Line loss under standing waves – recommendation of dodgy tool on eHam
This article is an expose of the internals of a common Chinese no-name 1-500MHz Return Loss Bridge available on eBay for around $50 incl post.
Above is the exterior of the device. Specs are sparse: P<23dBm, Directivity>36dB. Continue reading Chinese no-name 1-500MHz Return Loss Bridge
I often see comparisons of toroidal inductors of different core dimensions with all other characteristics (eg turns, core type, frequency) held the same.
There seems an implicit assumption by many that the bigger the core, the larger the inductance. There are several failure in that thinking.
The ‘inductance’ of a toroidal inductor is µ*n^2*a/l where:
Note that at RF, permeability may be a complex frequency dependent value, and therefore ‘inductance’ will be a complex value.
Many online calculators incorrectly calculate l from core dimensions using a simplistic formula.
Many online calculators treat permeability as a real number that is not frequency dependent, they use initial permeability (µi). Continue reading Comparing toroidal inductors of different core dimensions
The so-called End Fed Half Wave antenna system has become more popular, particularly in the form of a broadband matching transformer in combination with a wire operated harmonically over perhaps three octaves (eg 7, 14, 21, 28MHz).
The broadband transformer commonly uses a medium µ ferrite toroid core, and a turns ratio of around 8:1. Flux leakage results in less than the ideal n^2 impedance transformation, and a capacitor is often connected in parallel with the 50Ω winding to compensate the transformer response on the higher bands.
David, VK3IL posted EFHW matching unit in which he describes a ferrite cored transformer matching unit that is of a common / popular style.
Above is David’s pic of his implementation. It is a FT140-43 toroid with 3 and 24t windings and note the 150pF capacitor in shunt with the coax connector.
The article End fed matching – analysis of VK3IL’s measurements gives the following graph showing the effects of compensation for various resistive loads. Continue reading End fed half wave matching – voltage rating of compensation capacitors
This article describes a setup for derusting small steel components, mainly machine tool accessories, using a Molasses solution.
A 10% Molasses solution can be an effective way to derust steel. Feed grade Molasses costs about $2/kg at the local rural store.
The process is bacterial and activity depends on temperature. Experimentation suggests that optimal temperature is 30-35°, and derusting can be achieved in a few days at that temperature (subject to the degree of rust). At lower temperatures, the process may take many weeks. The nice thing compared to electrolytic derusting is that work is unlikely to be damaged by the process.
Above, the rust treatment system comprises:
Above is an internal view of the thermostat made from a Chinese 230VAC thermostat, a 3m extension cord and ABS plastic box. Continue reading Molasses derusting of steel
The WBT-4000W is a triac dimmer selling for upwards of $25 on eBay.
It claims:
AC 0V-220V continuously adjustable, zero hysteresis, zero latency, superior heat dissipation.
The question is, does it deliver these things? Continue reading WBT-4000W 230V AC dimmer / motor speed controller
This is a review of an inexpensive MH1230A Chinese bang-bang thermostat that was purchased on eBay for around A$15 complete with thermistor sensor and postage.
Above is the front view of the thermostat. There are many thermostats on the market with similar front panels, but they differ in internals and most importantly, performance and quality.
Above, the rating label is clear and informational, and it does give the sensor parameters. Continue reading Review of inexpensive Chinese thermostat – MH1230A
The net abounds with articles on broadband transformers (ie untuned) for matching End Fed Half Wave (EFHW) antennas to 50Ω. One of the aspects that is common to most designs is that the turns of the primary winding are wound ‘bifilar’ with the start of the secondary winding, indeed the twist pitch is often very short and articles often go into detail on how to make this magic thing.
The magic is that it is supposed to give closer to ideal behaviour of the transformers by way of minimising flux leakage.
The transformer above is styled on the common design, and it consists of a 2t primary and 16t secondary where the primary is wound bifilar, and a third 2t winding wound over the primary end of the transformer between the other turns. Continue reading On winding configuration of EFHW matching transformers