nanoVNA-H – woolly thinking on MLL measurement

There is little doubt that the nanoVNA has made VNAs very popular in the ham community, possibly more so that any other device.

Eager owners are trying to apply them to solve lots of problems, often without sufficient knowledge or experience to properly inform the measurements.

An example that has a appeared a few times on online forums in the last weeks is measuring the matched line loss (MLL) of a section of RG6 coax… to inform a decision to discard it or keep it.

The common approach is to use a measurement of |s11| and to calculate Return Loss and infer the MLL.

DUT

For discussion, lets consider an example of 30′ of Belden 1694A RG6 solved in Simsmith. We should note that unlike most RG6 in the market today, this uses a solid copper centre conductor.

Short circuit termination

Some authors insist that the half return loss method is to be performed using a short circuit test section. Bird does this in their Bird 43 manual.

Above is a plot of calculated |s11| (-ReturnLoss) from 1 to 20MHz for the test section. The three plots are of |s11| wrt 50Ω, 75Ω and frequency dependent actual Zo (as calculated for the model). The cursor shows that the actual |s11| is -0.37474dB (ReturnLoss=0.37474dB). Using the half return loss method MLL=ReturnLoss/2=0.37474=0.187dB/m. Continue reading nanoVNA-H – woolly thinking on MLL measurement

RG6 cladding thickness report

N0TZU recently report his perception that a length of Logico COX3520 RG6 Quad cable he purchased exhibited higher than expected Matched Line Loss (MLL) at 10MHz.

Most RG6 type cable sold these days at low cost uses a copper clad steel centre conductor, and much of it has insufficient copper cladding thickness for copper like performance at HF.

Above is a pic N0TZU gave of the centre conductor cross section. It is possible to measure the cladding thickness from the pic knowing that the overall diameter is 1.024mm. The copper thickness measured 13.7µm, lets round it to 14µm. Continue reading RG6 cladding thickness report

nanoVNA-H – thinking laterally

A question was asked in an online forum specific to nanoVNA as to how the use the nanoVNA to check the attenuation loss in some old & weathered RG-6 (75 ohm) cables for the TV signal frequencies. Excuse the term attenuation loss, lets assume the poster is asking for matched line loss (MLL).

The assembled experts are offering solutions to transform the ports to 75Ω and make a measurement, deducting the loss of the transformation (minimum loss pads were suggested).

There is a very simple solution that should be quite practical for the scenario described. Let’s work through two examples using 35.5m of unbranded quad shield RG6 with CCS centre conductor (of unknown quality) for the DUT. Continue reading nanoVNA-H – thinking laterally

Chinese CH2 terminal block (CH1 CH3)

I purchased some CH2 terminal blocks on eBay. They were advertised as 250V AC, 10A, to suit 2.5mm^2 conductors.

Above is the seller’s pic of the terminal block.

Features:
– Fast wiring
– Prevents the wire from shorting out
– Free drilling screws, increase the speed of assembly
– Can completely replace electrical tape
– Cost savings
– Fast、efficient and safe
– Widely used in the wire connection,especially for LED Lighting Ceiling
– lamp dedicated wiring clip.

Specification
– Material: PP Flame Retardant Plastic
– Reed material: Manganese Steel Sheet
– Color: White
– Voltage: 220V
– Current: 10A
– Type: 2Pin Connector
– Style:Self-locking Cable Connector
– Temperature: -40 to 150 Degrees Celsius
– Wiring: Wiring Capacity From 0.5-2.5 Square Wire
– Size: CH-2:Approx. 20*17.5*13.5mm

Close inspection cause me concern for their performance, there is no current rating marked. The product is labelled KX-P2 and appears to be a product of Foshan Shunde Kaixiang Electrical Co Ltd, but the Chinese being great copyists, this may have come from another source. Continue reading Chinese CH2 terminal block (CH1 CH3)

Conversion of oyster luminaire to LED

I purchased a kit to convert a oyster luminaire to single colour LED on eBay. The kit was nominally 18W, supplied with the 5730 LED plate and driver module for about $10 incl shipping.

A cautionary note: do not play with these things unless you have the necessary competencies.

The thing was packed in nothing more than a plastic mailing bag and was bent in several places in transit from China. It was not usable in that state and some LEDs were not working so my money was refunded in full (after the usual tug-o-war eventually resolved with eBay intervention). It had to be straightened to be usable, but at the risk of damaging LEDs and possibly cracking or compromising the insulation layer.

Above, after flattening the back plate, nearly half the LEDs are not working. Continue reading Conversion of oyster luminaire to LED

MFJ ATU hand effects on capacitor knobs

The problem

Users of some ATUs may have noticed particular sensitivity to hands on the capacitor adjustment knobs. It is a common problem with cheap implementations of the T match as the capacitor rotor is usually at high RF voltage and if that shaft is extended to the adjustment knob, under certain circumstances tuning becomes very sensitive to hands on the knobs.

In some of these implementations, if the users hand touches the metal grub screw in the knob, or the metal panel bushing behind the knob they may get a significant RF burn.

The cause

Let’s use the MFJ-949E as a discussion example. It is a T match, and the metal capacitor shafts in the knobs and panel bushings carry RF voltages.

So why is this only sometimes a problem?

The RF voltage across the coil, and impressed on the capacitor shafts can be extremely high when using loads with small resistance and large negative reactance, more so on the lower bands. Continue reading MFJ ATU hand effects on capacitor knobs

nanoVNA-H – de-embedding the feed line in remote measurement

There are often times when it would be useful to transform measurements made looking into a feed line to the other end of the feed line.

Ham lore

Common advice given by online ham experts include:

  1. it just cannot be done, the best (only) point to measure an antenna is at the feed point;
  2. it can be done, but only with an integral number of half waves of feed line;
  3. use the port extension facility in your software;
  4. use software package x;
  5. do an OSL cal with the feed line being part of the fixture.

Continue reading nanoVNA-H – de-embedding the feed line in remote measurement

WIA 4:1 current balun – further measurements

4-101a

I mentioned in my article WIA 4:1 current balun that the use of a single toroidal core in the above graphic compromises the balun. This article presents some simple measurements and analysis that question whether the balun works as so many users think.

The popularity of the balun derives from the work of VK2DQ and is often known as the VK2DQ 4:1 current balun (though probably not his invention).

Analysis at the limits

Often, analysis of a network as frequency approaches zero or infinity can simplify the analysis whilst allowing a reasonable test of the sanity of the design.

Above is a conventional transformer schematic of the WIA 4:1 current balun on a perfectly symmetric (balanced) load. At frequencies where the electrical length of each winding is very short, we can assume negligible phase delay along or between windings, simplifying analysis greatly. Continue reading WIA 4:1 current balun – further measurements

4:1 current balun – identifying bad ones

Correspondents have informed me that the balun dealt with in article 4:1 current balun – review and fix and variants are very common. This article gives a checklist of common issues and some basic measurements using an antenna analyser that should reveal some issues without breaking into a sealed assembly.

Introduction

Baluns are commonly employed to obtain nearly balanced feed line currents (ie negligible common mode current) in two wire lines or negligible common mode current on coaxial feed lines. This article discusses baluns for that application.

A very common 4:1 current balun is Guanella’s 4:1 current balun, but there are others including pretenders.

Three common 4:1 current baluns

Guanella 4:1 current balun

(Guanella 1944) described a 4:1 current balun in his 1944 article, he did not show the winding pairs coupled by a magnetic core as shown above.

Guanella421

Above is Guanella’s circuit, and he does not show coupling between the two winding pairs.

Properly implemented, this device is known to work very well.

Sevick’s single core 4:1 current balun

Let us look at Sevick’s device because it underlies so many failures.

If you look at it very carefully, you will see that the two output wires emerge from opposite sides of the core, the left hand wire exiting under the core was wound from front to back of the core and the right hand wire exiting on top of the core was wound from back to front of the core. Continue reading 4:1 current balun – identifying bad ones