Rigexpert AA-600 N connector dimensions

A recent post by David Knight described dimensional issues with the N connector on his AA-600 and problems with the seller in having it resolved.

Warned of a potential quality issue, I measured my own AA-600.

Above, the test of the inner pin forward surface distance from the reference plane on the N jack on the AA-600. The acceptable range on this gauge for the female connector is the red area, and it is comfortably within the red range.

Above is a table of critical dimensions for ‘ordinary’ (ie not precision) N type connectors from Amphenol.

This dimension is important, as if the centre pin protrudes too much, it may damage the mating connector.

Pleased to say mine is ok, FP at 0.192″.

I used a purpose made gauge to check this, but it can be done with care with a digital caliper (or dial caliper or vernier caliper), that is what I did for decades before acquiring the dial gauge above.

AIM4170 – de-embedding the feed line in remote measurement – a simple match

At AIM4170 – de-embedding the feed line in remote measurement a set of measurements of a monoband antenna looking from the transmitter were analysed to de-embed the feed line and arrive at the indicated feed point impedance.

This article explores a simple series match to improve the load seen by the transmitter.

In the Simsmith model above, the estimated feed point impedance is imported into element L, then a series section of lossless 50Ω line to represent the coax in the common mode choke (balun), then a series section of lossless 75Ω to perform the impedance transformation, then a section of 50Ω lossless line to make up the required length to the transmitter. Continue reading AIM4170 – de-embedding the feed line in remote measurement – a simple match

AIM4170 – de-embedding the feed line in remote measurement

At nanoVNA-H – de-embedding the feed line in remote measurement I recently wrote on a procedure that can be very useful to refer measurements made at the transmitter end of a feed line to the antenna feed point.

A correspondent recently shared an AIM 4170 scan file of his 40m half wave dipole antenna system taken from the transmitter end of the coax and maintaining the common mode current path by bonding the shield of the coax connector to normal connection point on the transmitter.

Above is his graphic of the measurement looking into around 23m of RG58 feed line.

It shows the VSWR curve is quite classic in shape, the frequency of minimum VSWR is a little low, and the minimum VSWR is 1.478 which is quite within expectations of such an antenna. Continue reading AIM4170 – de-embedding the feed line in remote measurement

nanoVNA-H – measure ferrite transformer – Noelec balun

At nanoVNA-H – measure ferrite transformer I gave an example of using a nanovna to measure loss of a ferrite cored transformer.

Noelec makes a small transformer, the Balun One Nine, pictured above and they offer a set of |s11| and |s12| curves in a back to back test. (Note: back to back tests are not a very reliable test.) Continue reading nanoVNA-H – measure ferrite transformer – Noelec balun

VSWR ripple

Having seen some recent discussion where the online experts opined that an example given of a VSWR plot that contained a fairly consistent ripple was quite normal, this article suggests there is an obvious possible explanation and that to treat it as quite normal may be to ignore the information presented.

Above is a partial simulation of a scenario using Rigexpert’s Antscope. It starts with an actual measurement of a Diamond X-50N around 146MHz with the actual feed line de-embedded. Then a 100m lossless feed line of VF=0.66 is simulated to produce the plot that contains a ripple apparently superimposed on an expected V shaped VSWR curve.

This is the type of ripple that the expert’s opine is quite normal. Continue reading VSWR ripple

Transformer loss from half return loss

The popularity of the nanovna with new users has led to a lot of ‘beginners’ seeking advice of the online experts.

A recent question and the responses exposes some common misunderstanding / woolly thinking.

A beginner in search of wisdom asked if there an easy way to measure balun loss?

One of the responses was…

Measure the return loss of the balun with the balun shorted. The return loss should be about twice the balun loss. This is similar to measuring the loss of a shorted or open piece of cable.

This was expanded by others, basically supporting the concept. Continue reading Transformer loss from half return loss

nanoVNA-H – another hardware fail – battery socket

I have a nanoVNA-H which has had many hardware problems, some designed in,but mostly sub-standard / faulty components.

Above, the latest repair. A new battery socket to replace the original that crumbled apart… sub-standard plastic from all appearances. This was from a reputable supplier, so it is probably a genuine Molex Picoblade part rather than some cheap Chinese knock off.

The blue wire is part of a mod to invoke the bootloader on power up, R5 was also changed to something small, 1k IIRC.

PS: a word of warning… always check polarity when fitting a battery, there is not rigid standardisation of connectors on LIPO batteries.

nanoVNA-H – Port 1 attenuator for improved what???

At nanoVNA-H – Port 2 attenuator for improved Return Loss I explained the reasons for essentially permanent attachment of a 10dB attenuator to Port 2 (Ch 1 in nanoVNA speak).

 

Above, the 10dB attenuator is semi permanently attached to Port 2 principally to improve the Return Loss (or impedance match) of Port 2, a parameter that becomes quite important when testing some types of networks than depend on proper termination (eg many filters). I should remind readers that the improvement in Port 2 Return Loss comes at a cost, the dynamic range of Port 2 is reduced by 10dB. Continue reading nanoVNA-H – Port 1 attenuator for improved what???