High gain external antenna for Wemos ProMini

I have some IoT projects that would benefit from range afforded by a better antenna than the on-board antennas in most ESP8266 modules.

The Wemos ProMini has an on-board IPX socket for an external antenna so it is a candidate. Note that a 0R 0603 resistor needs to be removed and another or a wire link soldered in to route the RF to the IPX socket.

Above the Wemos ProMini with a 7dBi SMA-RP antenna ($1.80) and flylead SMA-R(F) to IPX (M) ($1.00).  Continue reading High gain external antenna for Wemos ProMini

A search for some mid power white wide angle LEDs

I have a project which needs some mid power (~3W) white wide angle (120+°) LEDs.

The obvious source ie eBay which means running the gamut of Chinese sellers, sellers who rarely understand the product they sell and probably expect the same of buyers.

Buying electronic components on eBay

Component sales tend to fall into categories:

  1. those with headline descriptions that have very brief description of characteristics; and
  2. those whose descriptive content claims well known part numbers for which datasheets can separately be found;
  3. those with detailed specifications offered.

In the case of category 1, it is very hard to have confidence that the components will deliver required performance, and headline descriptions on eBay are often used as competitive search keywords and do not apply to the goods on offer. These are probably best skipped unless they are the only option.

Category 2 provides a better option, and the question then on delivery is whether the goods are compliant with the part number offered. There is a considerable risk of counterfeit or fake parts that are not equivalent to the claimed part number, even where brand names are cited.

The third category can provide suitable product, but it takes some leg work, more than ‘due diligence’ to check the description for consistency and form an idea about its reliability, fit to the requirements and then value for money, seller reputation etc. This can be a lot of work for a few dollars worth of parts, but is a better option than category 1.  Continue reading A search for some mid power white wide angle LEDs

ESP8266 relay module review – Yunshan WiFi relay

After scouring eBay for a packaged esp8266 with 220V 10A relay, two products were identified:

  • Yunshan WiFi relay; and
  • LC Technology relay.

As is usually the case, finding a schematic and specifications is very difficult and the sellers were of no help (no surprises).

The LC Technology device was offered with indistinct pics that hinted it had a 8Mb flash chip, ESP8266EX processor, and a STC 15F104 8 bit processor on board for some unidentified purpose.

A schematic was eventually located for the Yunshan board, and from pics it appeared to have a 12E module on it which hinted the flash size.

A Yunshan module was purchased for about $10 posted, and it was indeed a 12E with flash-id 4016, so 4MB of flash memory.

The board does not incorporate a USB-TTL adapter which is a nuisance not just requiring an external adapter for programming, but there is no integration of the RTS and DTR signals as in the NodeMCU devkit. Adding a quality USB adapter (eg CP2102) would not increase the price a lot, you can keep the CH340G etc). Continue reading ESP8266 relay module review – Yunshan WiFi relay

Reset helper for NodeMCU ESP8266 modules

A common scheme for Lua scripted NodeMCU modules with automatically start the script init.lua is to incorporate some logic to test the condition of a GPIO pin to determine whether to boot to the application or drop to the lua prompt for programming etc. In fact the scheme can be elaborated to provide a simple multi level selection based on the time the input condition is applied.

The obvious pin to use is the pin that commonly has a “BOOT” or “FLASH” button on it, GPIO0 or D3. It is used to activate the ESP8266 boot loader if it is low during boot, so it must be left high at boot to allow the lua interpreter to run, but it can be pulled low shortly after boot up and tested from init.lua.

An example init script follows.

print("\n\nHold Pin00 low for 1s t0 stop boot.")
print("\n\nHold Pin00 low for 3s for config mode.")
tmr.delay(1000000)
if gpio.read(3) == 0 then
  print("Release to stop boot...")
  tmr.delay(1000000)
  if gpio.read(3) == 0 then
    print("Release now (wifi cfg)...")
    print("Starting wifi config mode...")
    dofile("wifi_setup.lua")
    return
  else
    print("...boot stopped")
    return
    end
  end
print("Starting app.lua")
dofile("app.lua")

 

Above is a pic of the helper. The DIP switch allows selection of the BOOT pulse in 1s increments. It has four connections, ground, Vdd, BootOut, and Reset (optional). The button near the DIP switch resets the helper which in turn will apply a 10ms reset pulse to the Reset line. Continue reading Reset helper for NodeMCU ESP8266 modules

ESP8266 IoT DHT22 temperature and humidity – evolution 2

This article documents a first project with the Espressif ESP8266 in its second evolution.

The objective is a module that will take periodic temperature and humidity measurements and publish them to an MQTT message broker.

This inital implementation is very basic, it is largely configured in code, though it does use DHCP. Later extensions might include a web interface for configuration of WLAN parameters etc, but for the moment the emphasis is assessment of reliability given some reports on the ‘net.

Evolution 2

The original design embedded key configuration variables in the main source code for simplicity in getting the code working.

Evolution 2 separates configuration variables from code, and provides a web interface for configuring the most common variables. The screenshot above shows the configuration screen including the use of a datalist on the SSID input field.

Hardware

A module was purchased with on board CP210x USB to serial chip. The only other component needed was the DHT22 digital temperature and humidity sensor.

NodeMCU was chosen for the ESP2866 firmware because of the inbuilt support for ‘interesting things’, including the DHT22.

Above is a breadboard of the system for development. The board had a 4MB (32Mb) flash chip on it. Continue reading ESP8266 IoT DHT22 temperature and humidity – evolution 2

The fraud of energy efficient lighting – LED lighting

Having been pushed into CFLs due to conservationist action that removed incandescent lamps from the shelves before mature reliable product was available, I ventured into LED lighting because of the failure rate of the CFLs.

The LEDs are about the same power consumption as the CFLs they replace, the hope was that they had a longer life (you have seen the claims of 100,000 hours).

Two years after cutover, it is time to review their performance.

Of some 25 11W LEDs installed, most would not be used for an hour a month, but 11 are used every day for an average of around 4 hours per day.

The pic above shows the failures of two years operation, 5 of 11 have failed. The average life of the lamps that failed is less than 3000 hours. probably in the region of 2000 hours, certainly a long way short of the claims of 50,000 to 100,000 hours. Continue reading The fraud of energy efficient lighting – LED lighting

DHT22 (AM2302) input for the generic heating / cooling controller

The generic heating / cooling controller (hcctl) is a flexible bang-bang thermostat controller based on an ATTiny25.

The project has been expanded to accept the Aosong DHT22 temperature and humidity sensor. The DHT22 produces a digital output (signed tenths of a degree) has a range of -40° to 80°, accuracy of about 0.5°, and 0-99.9% RH and costs a few dollars. hcctl can be configured for either temperature or humidity sensing (not both simultaneously).

Above is a development prototype with the DHT22 being heated by a small incandescent dial lamp to test function.

Continue reading DHT22 (AM2302) input for the generic heating / cooling controller

Effect of shorting turns on a tapped air cored solenoid at RF

The roller inductor in a Palstar AT2K will be taken as an example to illustrate the technique. This tuner is popular and has a very good reputation amongst hams, though (Duffy 2012 was less enthusiastic).

Above a pic of the internals of the AT2K. The unused roller induction section is shorted. Continue reading Effect of shorting turns on a tapped air cored solenoid at RF

NodeMCU devkit V1 deep sleep

Low cost implementations of the NodeMCU devkit V1.0 abound on eBay, and are featured in lots of projects.

Deep sleep mode is used in a lot of projects, the MCU is but into sleep mode and it requires circuitry so that the  from the /WAKE pin (D0, GIO16) can pull the /RST pin to wake the processor up.

The problem

The common schematics as above simply wire /WAKE pin (D0, GIO16) to /RST (yellow wire), but this disrupts operation of the reset circuit, which degrades development productivity. Continue reading NodeMCU devkit V1 deep sleep

ESP8266 IoT DHT22 temperature and humidity

This article documents a first project with the Espressif ESP8266.

The objective is a module that will take periodic temperature and humidity measurements and publish them to an MQTT message broker.

This inital implementation is very basic, it is largely configured in code, though it does use DHCP. Later extensions might include a web interface for configuration of WLAN parameters etc, but for the moment the emphasis is assessment of reliability given some reports on the ‘net.

Hardware

A module was purchased with on board CP210x USB to serial chip. The only other component needed was the DHT22 digital temperature and humidity sensor.

NodeMCU was chosen for the ESP2866 firmware because of the inbuilt support for ‘interesting things’, including the DHT22.

Above is a breadboard of the system for development. Continue reading ESP8266 IoT DHT22 temperature and humidity