I purchased some ESP01S ESP8266 based WiFi modules on eBay.

Above, the ESP01S is a basic module comprising an ESP8266 and 1MB SPI flash memory (~$2.50 on eBay). Continue reading ESP01S first experience

Skip to content
# Author: Owen

## ESP01S first experience

## On the concept of that P=Pfwd-Prev

## On negative VSWR – Return Loss implications

## On negative VSWR – a worked example

## On negative VSWR

## Trying to make sense of the STC U8W chip programmer

## Fox flasher MkII – update 07/2019

## The private and public scope of coaxial cable

## Inductance

## Average power of SSB telephony – experimental verification

## Power rating of a ferrite cored transformer or balun

I purchased some ESP01S ESP8266 based WiFi modules on eBay.

Above, the ESP01S is a basic module comprising an ESP8266 and 1MB SPI flash memory (~$2.50 on eBay). Continue reading ESP01S first experience

The article On negative VSWR – Return Loss implications raised the question of the validity of the concept of that P=Pfwd-Prev.

The Superposition Theorem is an important tool in linear circuit analysis, and is used to find the combined response of independent sources. Superposition applies to voltages and currents, but **not** power. Continue reading On the concept of that P=Pfwd-Prev

On negative VSWR (read it first) discussed the case of negative VSWR results from some calculating tools and formulas, and more generally that simple formulas that depend on lossless line assumptions produce errors on practical lossy line scenarios.

Return Loss is defined as the ratio Pfwd/Prev, often given in dB.

Return Loss is usually calculated as 20*log(1/ρ), it yields negative calculated Return Loss for ρ>1. It would be a mistake to doctor the result to hide the negative return loss as it is a strong hint that the results may be invalid.

An important consideration here is the validity of the concept of Pfwd and Prev. Continue reading On negative VSWR – Return Loss implications

On negative VSWR (read it first) discussed the case of negative VSWR results from some calculating tools and formulas, and more generally that simple formulas that depend on lossless line assumptions produce errors on practical lossy line scenarios.

This article exposes an example at 100kHz where Zo=50.71-j8.35Ω and Zload=5+j50Ω.

If we were to use a probe to directly measure the magnitude of line voltage, we would expect the following.

Above, the standing wave plot. At first appearance it might look like a classic standing wave plot, but it is not… there is a tiny difference in the shape at the right hand side. Continue reading On negative VSWR – a worked example

Some calculating tools come up with a negative value of VSWR under some circumstances.

Considering the meaning of VSWR: the ratio of the voltage maximum on a long transmission line to the adjacent voltage minimum, calculated negative VSWR might seem an aberration, invalid even. Note that nothing in this definition makes VSWR a property of a dimensionless point on a line.

VSWR can be measured directly by sampling voltage along a transmission line with a voltage probe. That said, it is almost never done and VSWR is **inferred** from other measurements, usually point measurements.

A transmission line is free to carry waves in two directions, and the ratio of voltage to current for each of those waves is the characteristic impedance Zo. Continue reading On negative VSWR

STC is a Chinese maker of microcontroller chips, mostly 8051 architecture. The whole environment is characterised by a lack of English language information, or unreliable information.

The U8W is a programmer for some of their chips, and works in concert with their ISP programming software (Windows).

Above is the U8W. It was supplied without any documentation by an Aliexpress seller. Requests from the seller and from STC have not yielded any information. Continue reading Trying to make sense of the STC U8W chip programmer

Fox flasher MkII described a LED driver for an animal deterrent using a Chinese 8051 architecture microcontroller, the STC15F104E.

Above, the schematic. A very simple circuit with just a handful of electronic components (one capacitor, two resistors, one LDR, one Polyswitch, 4 x LEDs and the MCU). Note the capacitor in shunt with the LDR, it is to reduce noise and to provide a level of RFI protection. Continue reading Fox flasher MkII – update 07/2019

Let’s start by reviewing the concept of inductance.

**Inductance** of a conductor is the property that a change in current in a conductor causes a electro motive force (emf or voltage) to be induced in a conductor.

We can speak of **self inductance** where the voltage is induced in the same conductor as the changing current, or **mutual inductance** where the changing current in one conductor induces a voltage in another conductor. Continue reading The private and public scope of coaxial cable

Average power of SSB telephony used 80 year old research by (Holbrook and Dixon 1939) to come up with a ratio of peak voltage to RMS voltage of a voice waveform, and from that derive the ratio PEP/Pav..

(Holbrook and Dixon 1939) explored the subject measuring the voice characteristics of many talkers (as there is variation amongst talkers) to come up with an average characteristic.

Whilst in its day, obtaining instantaneous samples of voice was a challenge, it is trivial today and if you can’t believe the numbers given, try your own experiment (but realise it is for your own voice rather than the general population).

Many modern PC sound applications are capable of the measurement, I will demonstrate it with the feed Windows application Audacity with the stats.ny addin.

Above is a screenshot of a 6s recording of my voice made without stopping for breath. The statistics window shows a peak of -8.9dBFS and RMS of -27.4dBFS, giving a peak voltage to RMS voltage ratio of 18.5dB. Continue reading Average power of SSB telephony – experimental verification

Commercial products often have power ratings that bear checking.

There are common some key properties that are relevant:

- where loss is high, core loss tends to dominate;
- the specific heat of ferrite is typically quite high;
- the capacity to dissipate heat is related to many factors.

Continue reading Power rating of a ferrite cored transformer or balun