AIM 914 produces internally inconsistent results



A new release, AIM914 appeared recently.

In the common theme of one step forward, two steps backwards, this version has defects that were not present in AIM910B.

Let’s review the internal consistency of this part of the display screen.

Most of the values given above are calculated from a single measurement value, and should be internally consistent. That measurement value is translated to different quantities, many based on the stated Zref (75Ω in this case). Continue reading AIM 914 produces internally inconsistent results

Matched Line Loss of generic RG6/U Quad Shield CCS

This article documents a measurement of Matched Line Loss (MLL) of a 35m test section of generic RG6/U Quad Shield CCS.

It has become impossible in recent years to buy low cost RG6/U with solid centre conductor locally, and the imported product with solid copper conductor is prohibitively expensive (~$6/m as against $0.35/m for the CCS).

The CCS cable does have near copper like performance at UHF and above, but what is its behavior at HF?

Above is calculated MLL from a S11 scan of the test section with S/C and O/C termination. There is a little ripple on the response due to measurement error. The graph also has a curve fit, MLL=0.0285f^0.1506 (F in MHz). Continue reading Matched Line Loss of generic RG6/U Quad Shield CCS

Transmission line measurements – learning from failure


A recent article questioned the accuracy of measurement of Matched Line Loss (MLL) for a modified commercial transmission line. The published results were less than half the loss of an equivalent line in air using copper conductors and lossless dielectric, when in fact there would be good reason to expect that the line modification would probably increase loss.

How do you avoid the pitfalls of using analysers and VNAs to measure line loss?

Lets walk through a simple exercise that you can try at home with a good one port analyser (or VNA). Measuring something that is totally unknown does not provide an external reference point for judging the reasonableness of the results, so will use something that is known to a fair extent,


For this exercise, we will measure the Matched Line Loss (MLL) of a 6m length of uniform transmission line, RG58C/U cable, using an AIMUHF analyser. The AIM manual describes the method.

If you need to know the cable loss at other frequencies, enable the Return Loss display using the Setup menu and click Plot Parameters -> Return Loss and then do a regular scan of the cable over the desired frequency range with the far end of the cable open. Move the blue vertical cursor along the scan and the cable loss will be displayed on the right side of the graph for each frequency point

Note the one-way cable loss is numerically equal to one-half of the return loss. The return loss is the loss that the signal experiences in two passes, down and back along the open cable.

Our measurements will show that this is a naively simple explanation, and to take it literally as complete may lead to serious errors. Yes, it IS the equipment manual, but it is my experience that the designers of equipment, and writers of the manuals often show only a superficial knowledge of the relevant material.


Above is an extract of the datasheet for Belden 8262 RG58C/U type cable, our test cable should have similar characteristics. Continue reading Transmission line measurements – learning from failure

Loop in ground (LiG) – #4 – SDR for measurement?

A series of recent articles developed a Loop In Ground antenna system design.

To test the prototype, I thought it an interesting exercise to use a low end rx only SDR for the instrumentation, providing a graphic quantitative measure of performance that is within the reach of most hams.

The first device trialled was a RTL-SDR v3 dongle with Sdrsharp (SDR#) software under windows, a very low cost option ($40). I was unable to find meaningful NF specifications or end user measurements for the thing in direct sampling mode. Continue reading Loop in ground (LiG) – #4 – SDR for measurement?

Loop in ground (LiG) – #2 – trial topology selection

* * * D R A F T * * * – a working document.

This article documents the selection of the trial loop in ground configuration as a development from the loop on ground antenna (KK5JY).


The baseline is a minor variation of a design by KK5JY, a 15′ square loop 20mm above average ground, with 9:1 transformer and 50Ω load middle of one side.

Above is a plot of feed point impedance when the loop is driven. At 3.6MHz, the source impedance for a rx system is 43+j852Ω, and the mismatch loss to a 450Ω load is 11.0dB, a direct contribution to Antenna Factor (AF). Continue reading Loop in ground (LiG) – #2 – trial topology selection

Loop in ground (LiG) – #1 Feasibility study for rx only on low HF

* * * D R A F T * * * – a working document.

This article documents a feasibility study of a smallish loop on or in ground as a rx only antenna for 160-40m, possibly with advantage in high noise environments.

Various ‘on ground’ antennas are discussed online etc, but there is a distinct lack of supporting scientific evidence though subjective anecdotal evidence abounds.

The approach used here is to determine the degradation of S/N resulting from a low gain antenna system in the context of expected ambient noise as per ITU P.372-13. The analysis leans to the conservative side. Continue reading Loop in ground (LiG) – #1 Feasibility study for rx only on low HF

Implementation of G5RV inverted V using high strength aluminium MIG wire – 12 month review

This article continues on from Implementation of G5RV inverted V using high strength aluminium MIG wire documenting review after 12 months operation under a wide range of temperature, humidity and wind conditions.

Above is a view of the steel mast with the Inverted V G5RV rigged from the top of the 11m mast using a halyard though a purchase on a small gibbet to offset the antenna and feed line from the mast. There are lateral guys at 7m height, and the left hand one is non-conductive synthetic fibre rope. Atop the mast is a 2m/70cm vertical. Continue reading Implementation of G5RV inverted V using high strength aluminium MIG wire – 12 month review

40m filter for WSPRlite flex

The WSPRlite flex requires external low pass filters for each band of operation.

Since my experiments will be conducted on the 40m band, the following low pass filter meets the requirement. The inductors and capacitors make a seven element Chebyshev filter as designed by G3CWI for use in a 50Ω system.


Above, the filter is assembled on a piece of matrix board with two BNC connectors. The inductors are fixed with hot melt adhesive, and the whole thing served over with heatshrink tube. It is not waterproof. Continue reading 40m filter for WSPRlite flex

Another RFI mod of a speaker mic for DMR use

I bought a remote speaker-microphone (RSM) for a DMR portable from eBay (~$12 posted). Experience says that these suffer RF ingress which is seriously bad in DMR due to the amplitude modulation of the transmitted signal.

This RSM had somewhat improved filtering around the electret compared to others I have purchased. Continue reading Another RFI mod of a speaker mic for DMR use

RBN for antenna comparisons – Radcom 2018

There are a plethora of articles and presentations on the ‘net showing how to use the Reverse Beacon Network (RBN) to make quantitative antenna comparisons over real propagation paths.

It is certainly an interesting subject to most hams with a deep interest in antenna systems.

So called A/B comparisons of antennas are as old as ham radio itself, and experience hams know that they are quite flawed.

Because ionospheric propagation paths vary from moment to moment, the challenge is to make a measurement that is directly comparable with one made at a slightly different place, or frequency or time. Accuracy is improved by making several measurements, and finding a central value, more observations tends to reduce uncertainty in that estimate of the population central value.

The challenge is finding that central tendency.

Central tendency

There are three common methods of estimating the central tendency of a set of figures:

  • mean (or average);
  • median (or middle value); and
  • mode (or most common value).

The mean is a popular and well known measure of central tendency. It is a very good estimate of the central tendency of Normally distributed data, and in that case, we can compare means and calculate confidence levels for assertions about the difference between means. The mean is very susceptible to errors due to outliers, and skewed distributions.

The median is usually a better measure for skewed data.

The mode is if you like, the most frequent or popular value and has a great risk of being quite misleading on this type of data.

A recent article (Appleyard 2018) in Radcom provides a useful example for discussion.

Figure 3

Appleyard gives a summary table where he shows means of a set of RBN measurements of signals from two stations observed at 21 remote stations, and differences in those means.

There are some inconsistencies between the text and data recorded in the RBN database on the day. Continue reading RBN for antenna comparisons – Radcom 2018