Common mode choke measurement – length matters #2

Following on from Common mode choke measurement – length matters

Lots of people have reported experiments to show gross failure of s11 reflection measurement of high impedances such as those encountered measuring common mode chokes.

Above is a chart of a “10k resistor with leads” from (G4AKE 2020), the curve of interest is the s11 curve which he describes as unsuitable. He did not publish enough information to critique his measurement… so I will conduct a similar experiment. Continue reading Common mode choke measurement – length matters #2

Common mode choke measurement – length matters

There must be thousands of Youtube videos of “how to measure a common mode choke” to give a picture of some sort of the test configuration… though most lack important detail… and detail IS important in this case. Likewise there are lots of web pages on the same subject, and some have pics of the test configuration, again mostly lacking important detail.

For the most part, these show test configurations or ‘fixtures’ that might be appropriate for audio frequencies, but are unsuitable at radio frequencies, even at HF.

Connecting wires at radio frequencies are rarely ideal, the introduce some impedance transformation that may or may not be significant to the measurement project at hand. Such connections can be thought of as transmission lines, often mismatched so they have standing waves (meaning the impedance of the load appears to vary along the line.

Let’s take the DUT in my recent article Baluns: you can learn by doing! as an example for discussion.

Let’s take the saved s1p file from a S11 reflection impedance measurement as the example.

Above is a plot of the common mode impedance of the choke, solid line is |Z|, dashed line is R, dotted line is X. This was measured with connecting wires <10mm, see the original article. Continue reading Common mode choke measurement – length matters

Common mode choke measurement – estimating Cse

The article Baluns: you can learn by doing! presented measurements of a Guanella 1:1 Balun, a common mode choke.

Above is the prototype balun being a Fair-rite 5943003801 (FT240-43) wound with 11t of solid core twisted pair stripped from a CAT5 solid core LAN cable and wound in Reisert cross over style. Note that Amidon #43 (National Magnetics Groups H material) is significantly different to Fair-rite #43.

Above is a plot of the R and X components of Zcm taken from the .s1p file saved during measurement. Continue reading Common mode choke measurement – estimating Cse

Dave Casler’s “why so little loss?”… a fact check!

Dave Casler sets out in his Youtube video to answer why two wire transmission line has so little loss . With more than 10,000 views, 705 likes, it is popular, it must be correct… or is it?

He sets a bunch of limits to his analysis, excluding frequency and using lossless impedance transformation so that the system loss is entirely transmission line conductor loss.

He specified 300Ω characteristic impedance using 1.3mm copper and calculates the loop resistance, the only loss element he considers, to be 0.8Ω.

Above is Dave’s calculation. Using his figures, calculated \(Loss=\frac{P_{in}}{P_{out}}=\frac{100}{100-0.27}=1.0027\) or 0.012dB. Continue reading Dave Casler’s “why so little loss?”… a fact check!