Another small efficient matching transformer for an EFHW – 2643251002 – #5 – improved Simsmith model (v1.03)

This article applies the improved model: An improved simple Simsmith model for exploration of a common EFHW transformer designs (v1.03) to the design at Another small efficient matching transformer for an EFHW – 2643251002 – #1 – design workup.

Above is the prototype transformer wound with 14t of 0.71mm ECW tapped at 2t. The mm rule gives some scale. The turns are close wound, touching on the inner diameter of the core. Continue reading Another small efficient matching transformer for an EFHW – 2643251002 – #5 – improved Simsmith model (v1.03)

A Simsmith model of a Ruthroff 1:4 voltage balun – 2843009902 (BN43-7051)

A correspondent asked whether I had a tool similar to An improved simple Simsmith model for exploration of a common EFHW transformer designs (v1.03) to assist in the design of a ferrite cored Ruthroff 1:4 balun for HF.

In fact, the problem is the same as the one discussed in the article above, and the model is suited to application to the ferrite cored HF Ruthroff 1:4 balun case.

This analysis applies to a Fair-rite 2843009902 but may not apply to other manufacturer’s BN43-7051.

Above is a screenshot of the model calibrated against measurement. The magenta curve is the prediction and the blue curve is the measurement. Note that very small differences in measured value result in apparently large changes in InsertionVSWR, these two curves reconcile very well, especially considering the tolerances of ferrite material. Continue reading A Simsmith model of a Ruthroff 1:4 voltage balun – 2843009902 (BN43-7051)

Another small efficient matching transformer for an EFHW – 2 x 5943000601 (FT82-43) – VK4JJ build and measurement

The transformer is an autotransformer of 3+21 turns single layer close wound on a ‘stack’ of two Fair-rite 5943000601 cores (FT82-43?). Note that these were genuine Fair-rite stock, other #43 mix products in the market place may be significantly different (see Ferrite cored RF chokes in Class-E RF power amplifiers – core material issues for more discussion).

There are a plethora of designs using FT82-43 published on the ‘net, most of them have appalling loss.

Above is a Simsmith model and measurement of the transformer for reconciliation. The blue VSWR curve is the measurement and the magenta curve is the calibrated model, they agree well considering the tolerance of ferrite materials. Continue reading Another small efficient matching transformer for an EFHW – 2 x 5943000601 (FT82-43) – VK4JJ build and measurement

Another small efficient matching transformer for an EFHW – LO1238 – VK3PY, VK3TU build and measurement

This article documents the process of design, prototyping, measurement and final build of a 1:49 impedance ratio (1:7 turns ratio) EFHW transformer, exploring some alternative designs along the way, a collaboration between VK3PY and VK3TU with a little guidance.

The transformer is wound on a Jaycar LO1238 35x21x13mm toroid of L15 material (L15 appears to be a NiZn ferrite based on its very high resistivity), they sell at $7 for a pack of two.

2:14 winding

The first test was of a 2:14 turn winding terminated in a 2450Ω load. The transformer is an autotransformer of 2+12t with 91pF compensation capacitor installed in shunt with the 2t winding.

As expected, |s11| is pretty poor at the low end, corresponding to an InsertionVSWR=1.7 @ 3.5MHz.

Design rejected due to high InsertionLoss, magnetising admittance too high.

3:21 turn windings

The transformer is an autotransformer of 3+18t with 91pF compensation capacitor installed in shunt with the 3t winding. Continue reading Another small efficient matching transformer for an EFHW – LO1238 – VK3PY, VK3TU build and measurement

Another small efficient matching transformer for an EFHW – 2643251002 – #4 – G8GYW build and measurement

The article
Another small efficient matching transformer for an EFHW – 2643251002 – #2 – prototype bench measurement continued the development of a transformer design.

This article analyses measurements at 7.1MHz reported by Mike, G8GYW of his build of a similar transformer.

Above is G8GYW’s build, that is an inch grid on the bench. Continue reading Another small efficient matching transformer for an EFHW – 2643251002 – #4 – G8GYW build and measurement

Another small efficient matching transformer for an EFHW – 2643251002 – #4 – a paired Guanella 1:1 balun

Another small efficient matching transformer for an EFHW – 2643251002 – #2 – prototype bench measurement continued the development of a transformer design. This article presents a Guanella 1:1 (current) balun (or common mode choke) using the same type of core.

Above, the EFHW transformer prototype. Continue reading Another small efficient matching transformer for an EFHW – 2643251002 – #4 – a paired Guanella 1:1 balun

Another small efficient matching transformer for an EFHW – 2643251002 – #3 – thermal measurement

The article
Another small efficient matching transformer for an EFHW – 2643251002 – #2 – prototype bench measurement continued the development of a transformer design. This article presents thermal measurements.


Losses were predicted from a model as follows. Continue reading Another small efficient matching transformer for an EFHW – 2643251002 – #3 – thermal measurement

Another small efficient matching transformer for an EFHW – 2643251002 – #2 – prototype bench measurement

The article Another small efficient matching transformer for an EFHW – 2643251002 – #1 – design workup lays out the first steps in a design. This article documents bench measurements of a prototype transformer.

Above is the prototype transformer wound with 14t of 0.71mm ECW tapped at 2t. The mm rule gives some scale. The turns are close wound, touching on the inner diameter of the core. Continue reading Another small efficient matching transformer for an EFHW – 2643251002 – #2 – prototype bench measurement

Another small efficient matching transformer for an EFHW – 2643251002 – #1 – design workup

The article Another small efficient matching transformer for an EFHW – 2643251002 described a correspondent’s , Luis, CT2FZI, implementation of the transformer.

I have also had lengthy discussions with Faraaz, VK4JJ, who is experimenting with a similar transformer.

This article describes my own design workup and measurements using a Fair-rite suppression core, 2643251002. The cores are not readily available locally, so I bought a bunch from Digi-key.

I really resist  the tendency in ham radio to design around unobtainium, it is often quite misguided and always inconvenient. In this case, the motivation for these cores that use quite ordinary #43 material is the geometry of the core, they have ΣA/l=0.002995, a quite high and rivalling the better of binocular cores. High  ΣA/l helps to minimise the number of turns which assists broadband performance. See Choosing a toroidal magnetic core – ID and OD for more discussion.

Design criteria

  • EFHW;
  • InsertionVSWR<2 3-22+MHz;
  • nominal 49:1 transformation;
  • compensated;
  • autotransformer; and
  • 50W average power handing.

Some key points often overlooked in published designs of EFHW transformers:

  • Insufficient turns drives high core loss; and
  • leakage inductance is the enemy of broadband performance, so the design tries to minimise leakage inductance.

Note that high number of turns drives high leakage inductance, so the design is to a large extent, a compromise between acceptable core loss and bandwidth.

Initial design estimate

From models, I expect that a turns ratio of 2:14 (ie 14t tapped at 2t) is likely to deliver the design criteria (with suitable compensation capacitor).

Above is a perhaps ambitious initial objective using a simple model of the transformer, dotted line is Loss and solid line is InsertionVSWR. Continue reading Another small efficient matching transformer for an EFHW – 2643251002 – #1 – design workup