The Smith chart, a thing of beauty… and great utility

A recent post online provides an interesting demonstration of the value of the Smith chart in analysing a measurement problem.

I have 5.175m of “JSC 1320 300 Ohm Ladder Line 300 Ohm 20 AWG / 7 Strands Bare Copper”. … The first step is to sweep it to determine the velocity factor. Yet, when I sweep from 12-17MHz, I get the Smith chart attached. There’s no point when the impedance is close to zero.

It helps to understand the nature of what one is measuring, indeed the expected outcome if possible. Continue reading The Smith chart, a thing of beauty… and great utility

On testing two wire line loss with an analyser / VNA – part 4

This article calculates and compares three models for matched line loss (MLL) based on measurement of a transmission line section with short and open termination.

This article follows on from:

Measurements

The measurements permitted calculation of MLL vs frequency over the measurement frequency range of 10-200MHz.

The measurement frequency range was chosen as appropriate to the intended application range and the available / manageable sample length. To make measurements down to 100kHz with similar measurement noise would have required a test length of hundreds of metres.

Curve fitting

The measurement data was fitted to three popular models for MLL.

Above is a plot of MLL (dB/m) calculated from the measurements saved as s1p files (raw), and fits to three models: Continue reading On testing two wire line loss with an analyser / VNA – part 4

An admittance graph for NanoVNA-App

Often one finds that a cartesian plot of the components of admittance (conductance and susceptance) would be a convenient plot in understanding / solving a problem.

Let’s work through an example of designing an antenna shunt match to illustrate.

The example is based on measurement of the feed point impedance of a real antenna, an M40 1.2m long vehicle mounted helical whip for the 40m band.

Above is a plot of the VSWR. The minimum VSWR is a bit high, let’s drill down on it. Continue reading An admittance graph for NanoVNA-App

Measuring the gain of an antenna by the three antenna method

There are many methods of measuring the gain of an antenna, most of them call for a reference antenna of known gain. This method requires three antennas and does not require knowledge of the gain of any of them, but will find the gain of each of them.

Explanation

Harald Friis gave us the familiar transmission equation: \(\frac{P_r}{P_t}=\frac{A_r A_t}{r^2 \lambda^2}\\\). Continue reading Measuring the gain of an antenna by the three antenna method

On ferrite cored RF broadband transformers and leakage inductance

By broadband transformer, I mean a transformer intended to have nearly nominal impedance transformation over a wide frequency range. That objective might be stated as a given InsertionVSWR over a given frequency range for a stated impedance. eg InsertionVSWR<2 from 3-30MHz with 3200(+j0)Ω load.

These are used in many things, including medium to high power applications such as EFHW matching transformers.

Leakage inductance is the equivalent series inductance due to flux that cuts one winding and not the other, and vice versa. For most simple transformers, the total primary referred leakage inductance is twice the primary leakage inductance. Since the leakage inductance appears in series with the signal path, it causes degradation of nominal impedance transformation, the very simplest approximation of the frequency response is that of a LR circuit.

Above is a Simsmith model of a 1µH total leakage inductance in series with a 50+j0Ω load, the InsertionVSWR is greater than 1.5 above 3MHz.

Is this a common scenario? Continue reading On ferrite cored RF broadband transformers and leakage inductance

Tips and techniques for measuring small RF inductors and transformers

Over more than 50 years, I have measured literally thousands of RF inductors and transformers. This article gives some hints and techniques for making / preparing prototypes for measurement, and measurement.

RF inductors and transformers will often use enameled copper wire (ECW) or some form of insulated wire or coax.

Solid core LAN cables are a good source of small insulated wire for prototyping. The conductor is around 0.5mm, and overall about 0.9mm.

Handy tools

Above, from left to right: Continue reading Tips and techniques for measuring small RF inductors and transformers

NanoVNA-H4 v4.3 – initial impressions

I have owned a NanoVNA-H v3.3 for more than two years now. It required some modification to fix a power supply decoupling problem on the mixers, reinforcement of the SMA connectors, replacement of the USB socket, rework of the case so the touch screen worked properly / reliably, and some minor works (eg battery charger chip, bad patch cables, faulty USB cable).

With recent enhancement of firmware to support an SD card, the prospect of stand alone use becomes more practical, so I set about researching and purchase.

It seemed the best option was to buy a ‘genuine’ NanoVNA-H4 v4.3, and I started the search at the recommended (by Hugen) store, Zeenko… but whilst there was a listing for v4.2, there was no v4.3 listing (perhaps it is out of stock). I did find another store selling what they described as a ‘genuine’ NanoVNA-H4 v4.3, but this is a high risk transaction, experience is that Chinese sellers are not to be trusted, and Aliexpress is an unsafe buying platform.

This is one of those concerning transactions where the seller notifies shipment and gives a tracking number hours before the deadline, then a week later change the tracking number (the ‘real’ shipment).

Above, the promo image from the listing. Continue reading NanoVNA-H4 v4.3 – initial impressions

Resolve measurement of I1, I2 and I12 into Ic and Id

This article explains the technique used at

Introduction

If we consider a two wire transmission line, we can define currents I1 and I2 flowing in the same direction in each conductor. Continue reading Resolve measurement of I1, I2 and I12 into Ic and Id

RTKLIB using stunnel for TLS connection to NTRIP host

RTKLIB does not currently natively support TLS, hopefully it will in time.

This article details configuration of RTKLIB rtknavi to work on a Win10 workstation using stunnel to connect to a NTRIP server that is only available using TLS.

The version of rtklib used is v2.4.3b33, and stunnel v5.60.

Continue reading RTKLIB using stunnel for TLS connection to NTRIP host