Noise Figure – Equivalent Noise Bandwidth

Harald Friis (Friis 1944) gave guidance on measuring the noise figure of receivers, and explains the concept of Effective Bandwidth.

Effective Bandwidth

The contribution to the available output noise by the Johnson-noise sources in the signal generator is readily calculated for and ideal or square-top band-pass characteristic and it is GKTB where B is the bandwidth in cycles per second. In practice, however, the band is not flat; ie, the gain over the band is not constant but varies with frequency. In this case the total contribution is ∫GfKTdf where Gf is the gain at frequency f. The effective bandwidth B of the network is defined as the bandwidth of an ideal band-pass network with gain G that gives this contribution to the noise output.

Continue reading Noise Figure – Equivalent Noise Bandwidth

nanovna-saver – a first look

The NanoVNA is a new low cost community developed VNA with assembled units coming out of China for <$50.

I have long held the view that these things are most useful when accompanied by a capable PC client that performs flexible text book presentations of data.

Considering buying one, my first step was to perform a desk evaluation of a popular PC client, which seems to be nanovna-saver.

Before downloading it, I examined the first screenshot on the github page.

It gives evidence that the author does not follow industry standard convention for transmission line terms and theory.

In the results shown above (s11) impedance is 39.105+j39.292Ω and some transformations of that value. Continue reading nanovna-saver – a first look

Antenna analyser – what if the device under test does not have a coax plug on it?

I have written a few articles on fixtures for adapting the device under test (DUT) to an antenna analyser’s coax jack.

Antenna analysers come with a range of connectors, the UHF connector is very popular, perhaps less so are N-type, SMA and BNC.

I use a range of fixtures made to suit specific applications, but the most flexible are the two shown in the following pic.

Above are two adapters: Continue reading Antenna analyser – what if the device under test does not have a coax plug on it?

Post post implementation review R134a replaced with HyChill Minus 30

I repaced the R134a refrigerant in my car aircon system with a hydrocarbon refrigerant, Hychill Minus 30 (HC-30).

Research had indicated that permeation of reduced barrier hoses was problem with HC refrigerants. The hoses in the car were Goodyear hoses with catalogue numbers, but I was unable to find data on them. Their diameter was comparable to standard barrier hoses, so I proceeded with the trial. Continue reading Post post implementation review R134a replaced with HyChill Minus 30

Diagnosing a possible antenna problem by comparison with a baseline

Recently I have had difficult reaching the local DMR repeater on 70cm, and needed to check that the antenna system had not deteriorated.

I took a baseline measurement with an AA-600 after some refurbishment work in Jan 2018, and was able to compare a current sweep to that baseline.

Above, a wide Return Loss sweep of the Diamond X-50N with feed line compared to the baseline (the thin blue line). Continue reading Diagnosing a possible antenna problem by comparison with a baseline

Do Distortionless Lines exist?

I am asked about my use of the term Distortionless Lines from time to time, often in the vein of they don’t exist, so why discuss them?

Concept

The concept derives from the work of Heaviside and others in seeking a solution to distortion in long telegraph lines.

The problem was that digital telegraph pulses were distorted due to different attenuation and propagation time for different components of the square waves.

Heaviside proposed that transmission lines could be modelled as distributed resistance (R), inductance (L), conductance (G) and capacitance (C) elements.

In each incremental length Δx, there is incremental R, L, G and C. Continue reading Do Distortionless Lines exist?

Transmission lines: departure from ideal Zo

The article On the concept of that P=Pfwd-Prev discussed the question of the validity of the concept of that P=Pfwd-Prev, exploring an example of a common nominally 50Ω coaxial cable at 100kHz. The relatively low frequency was used to accentuate the departure from ideal.

This article digs a little further with analyses at both 100kHz and 10MHz.

100kHz

A plot was given of the components and sum of terms of the expression for power at a point along the line.

Lets look at the power calculated from voltages and currents for the example at 100kHz where Zo=50.71-j8.35Ω and Zload=5+j50Ω.

Above, the four component terms are plotted along with the sum of the terms. Continue reading Transmission lines: departure from ideal Zo

From lossless transmission line to practical – Zo and γ

On the concept of that P=Pfwd-Prev discussed the expression for power at a point on a line in terms of the travelling wave voltage and current components.

The expansion of P=real((Vf+Vr)*conjugate(If+Ir)) gives rise to four terms.

This article looks at the components of that expansion for a mismatched line for a range of scenarios.

The scenarios

  • Lossless Line;
  • Distortionless Line; and
  • practical line.

We will override the imaginary part of Zo and the real part of γ (the complex propagation coefficient) to create those scenarios. The practical line is nominally 50Ω and has a load of 10+j0Ω, and models are at 100kHz.

Lossless Line

A Lossless Line is a special case of a Distortionless Line, we will deal with it first.

A Lossless Line has imaginary part of Zo equal to zero and the real part of γ equal to zero.

Above is a plot of the four components of power and their sum at distances along the line (+ve towards the load). Continue reading From lossless transmission line to practical – Zo and γ

SimSmith example of VSWR assessment

A reader of On the concept of that P=Pfwd-Prev asked if / how the scenario discussed could be modelled in SimSmith.

SimSmith uses different transmission line modelling to what was used in that article, but a SimSmith model of RG58A/U allows illustration of the principles and it will deliver similar results.

Let’s explore the voltage maximum and minimum nearest the load to show that VSWR calculated from the magnitude of reflection coefficient is pretty meaningless in this scenario.

Above is the basic model. I have created two line sections, one from the load to the first voltage maximum, and another to the first voltage minimum where I have placed the source. I have set Zo to the actual Zo of the line as calculated by SimSmith (56.952373-j8.8572664Ω), effZ as SimSmith calls it, so the Smith chart relates to the real transmission line. Continue reading SimSmith example of VSWR assessment