nanoVNA – measure Transmission Loss – example 5

This article is demonstration of measurement of Transmission Loss in a section of two wire transmission line embedded in a common mode choke. The scenario is based on an online article  MEASURING DM ATTENUATION of YOUR CMC USING THE NANOVNA AND NANOVNA SAVER.

The reference article publishes measured attenuation or loss being -1.45dB @ 28.4MHz. Of course, the -ve value hints that the author is lost in hamdom where all losses MUST be -ve dB..

The meaning of loss in a generic sense (ie without further qualification) is \(loss=\frac{Power_{in}}{Power_{out}}\) and can be expressed in dB as \(loss_{dB}=10 log_{10}(loss)\).

Some might interpret the result to imply that \((1-10^{\frac{-loss}{10}})*100=28 \%\) of input power is converted to heat in the choke.

The result given (and corrected) as 1.45dB was taken simply from the nanoVNA \(|s21|\) result, and so it is actually InsertionLoss, not simply Loss.

What is the difference? Continue reading nanoVNA – measure Transmission Loss – example 5

Using complex permeability to design with Fair-rite suppression products

Fair-rite allocates some of its closed loop ferrite products to two different categories:

  • inductive; and
  • suppression.

Sometimes the same dimensioned cores are available in both categories with different part numbers and possibly different prices, implying some real difference in behavior, eg 5943003801 and 2643803802 are both FT240-43 sized cores.

Material datasheets often contain a note like this from the #43 datasheet:

Characteristic curves are measured on standard Toroids (18/10/6 mm) at 25°C and 10 kHz unless otherwise indicated. Impedance characteristics are measured on standard shield beads (3.5/1.3/6.0 mm) unless otherwise indicated.

I sought to clarify my interpretation of this clause by asking Fair-rite …whether the published material permeability curves / tables apply to suppression product. Can I use the published permeability curves / tables to predict inductor impedance reliably for suppression products?  Fair-rite’s Michael Arasim advised… Continue reading Using complex permeability to design with Fair-rite suppression products

Black body emissivity of ferrite core material

Some of my articles have contained thermal pictures of ferrite cored inductors and transformers.

I have been asked several times recently about the assumed emissivity and the accuracy questioned, I assume this has been discussed online somewhere.

When first measuring ferrites with non-contact thermometers, I performed some experiments to discover whether the default emissivity ε=0.95 applied. It would be convenient if it did, and permit use of some instruments that do not allow adjustment of ε.

In the past, I have compared the reading of non-contact thermometers with several K thermocouple meters and a Thermomelt indicator, and observed insignificant difference (ie less than the variance of repeated measurements).

The following experiment is a thermal pic of a FT240-43 core on the black plastic case of the instrument. The setup has had hours to stabilise thermally.

Above is a combined thermal image and faint visual image. This instrument has only one readout point, and by moving it around, only 0.1° variation was observed between the background and the core. Continue reading Black body emissivity of ferrite core material

Calculate ferrite cored inductor – rectangular cross section – enhancement – chamfered corners

The calculator Calculate ferrite cored inductor – rectangular cross section has until now assumed that the toroid has sharp corners. The corner treatment varies across commercial products, some are burnished which removes very little material, some have a chamfer or bevel, some are radiused. All of these treatments give rise to a very small error in calculated ΣA/l.

The calculator has been revised to include 45° chamfers of a specified length on all four corners. If the chamfer angle differs, the error is very small in the range 30-60°. If the corners are radiused, use the radius as the chamfer length, the error is very small. Continue reading Calculate ferrite cored inductor – rectangular cross section – enhancement – chamfered corners

Disturbing the thing being measured – coax line

An issue that often arises in online discussions inability to reconcile the VSWR indicated by a transceiver (or possibly an inline VSWR meter) and an antenna analyser.

Is this Segal’s law at play?

There are several common contributors including:

  • faulty, dirty, or not properly mated connectors and cables;
  • VSWR meters that are not accurate at low power levels; and
  • influence of the common mode current path on VSWR.

Continue reading Disturbing the thing being measured – coax line

nanoVNA – measure Transmission Loss – example 4

This article is demonstration of measurement of Transmission Loss in a section of coaxial transmission line. The scenario is chosen to expose the experiment to some of the things that complicate such measurements.

The very popular nanoVNA-H will be used to make the measurements.

The scenario:

  • nanoVNA fully calibrated from 1.5-1.8MHz using a 200mm length coax lead on Port 2 (nanoVNA CH1);
  • 10m of RG58C/U; and
  • f=1.65MHz.

Above is a block diagram of the test configuration. nanoVNA measurements are wrt 50Ω, so \(P=\frac{V^2}{50}\) and \(V=\sqrt{50P}\). Continue reading nanoVNA – measure Transmission Loss – example 4

nanoVNA – measure Transmission Loss – example 3

This article is demonstration of measurement of Transmission Loss in a section of coaxial transmission line. The scenario is chosen to expose the experiment to some of the things that complicate such measurements.

The very popular nanoVNA-H will be used to make the measurements.

The scenario:

  • nanoVNA fully calibrated from 1-5MHz using a 200mm length coax lead on Port 2 (nanoVNA CH1);
  • 35m of CCS RG6/U (close to an electrical quarter wavelength);
  • 75-50Ω Minimum Loss Pad (5.72dB); and
  • f=1.65MHz (close to a quarter wavelength.

Above is a block diagram of the test configuration. nanoVNA measurements are wrt 50Ω, so \(P=\frac{V^2}{50}\) and \(V=\sqrt{50P}\). Continue reading nanoVNA – measure Transmission Loss – example 3

nanoVNA – measure Transmission Loss – example 2

This article is demonstration of measurement of Transmission Loss in a section of coaxial transmission line. The scenario is chosen to expose the experiment to some of the things that complicate such measurements.

The very popular nanoVNA-H will be used to make the measurements.

The scenario:

  • nanoVNA fully calibrated from 1-5MHz using a 200mm length coax lead on Port 2 (nanoVNA CH1);
  • 35m of CCS RG6/U (close to an electrical quarter wavelength);
  • three 50Ω terminations in shunt with VNA Port 2; and
  • f=1.65MHz (close to a quarter wavelength.

The transmission line load is four 50Ω loads in parallel, one of them being VNA Port 2. Only one quarter of the output power is captured by the VNA, so there is effectively a loss of 6.02dB in that configuration. It also delivers a 12.5+j0Ω load the the transmission lines, VSWR is about 6. Note this power division is based on the assumption that Zin of Port 2 is 50+j0Ω, and error in Zin flows into the result. A 10dB attenuator is fitted to Port 2 prior to calibration to improve accuracy of Zin.

Above is a block diagram of the test configuration. nanoVNA measurements are wrt 50Ω, so \(P=\frac{V^2}{50}\) and \(V=\sqrt{50P}\). Continue reading nanoVNA – measure Transmission Loss – example 2

nanoVNA – measure Transmission Loss – example 1

This article is demonstration of measurement of Transmission Loss in a section of coaxial transmission line. The scenario is chosen to expose the experiment to some of the things that complicate such measurements.

The very popular nanoVNA-H will be used to make the measurements.

The scenario:

  • nanoVNA fully calibrated from 1-5MHz using a 200mm length coax lead on Port 2 (nanoVNA CH1);
  • 35m of CCS RG6/U (close to an electrical quarter wavelength); and
  • f=1.65MHz (close to a quarter wavelength.

Above is a block diagram of the test configuration. nanoVNA measurements are wrt 50Ω, so \(P=\frac{V^2}{50}\) and \(V=\sqrt{50P}\). Continue reading nanoVNA – measure Transmission Loss – example 1

Magnitude and phase of V2/V1 for a 180° transmission line section

The discussion at Magnitude and phase of I2/V1 for a 90° transmission line raises the question whether something special happens for a 180° line section.

This article discusses the quantity V2/V1 for a special case, a 180° transmission line section.

180° transmission line sections are often used as part of a balun for VHF/UHF antennas.

Above is an application of a 180° line, a ‘half wave balun’, the U shaped section is 180° in electrical length. Continue reading Magnitude and phase of V2/V1 for a 180° transmission line section