A simple transformer model of the Guanella 1:4 balun – some further observations

A simple transformer model of the Guanella 1:4 balun discussed a simple model for the operation of the device, but a model that is too simple for most RF baluns. Notwithstanding that, it does expose some interesting issues that are not only valid at lower frequencies, but will also be manifest in an RF balun.

Isolated load

Consider the effect of breaking the connection at the red X, so that we now have  what is often referred to as an “isolated load”. Continue reading A simple transformer model of the Guanella 1:4 balun – some further observations

A simple transformer model of the Guanella 1:4 balun

(Guanella 1944) described a 1:4 balun, of a type often known as a current balun.

From Definition: Current Balun, Voltage Balun:

An ideal current balun delivers currents that are equal in magnitude and opposite in phase.

A good current balun will approach the ideal condition. It will deliver approximately equal currents with approximately opposite phase, irrespective of the load impedance (including symmetry).

Common mode current will be small.

If the load impedance is not symmetric, then the voltages at each output terminal will not be equal in magnitude and opposite in phase. (Note that for a truly ‘isolated’ load, one well represented as a two terminal load, the currents MUST be equal in magnitude and opposite in phase, but the voltages may not be equal in magnitude and opposite in phase.)

A simplified model

 

Above is a schematic of the Guanella 1:4 balun as often presented, this is an edited graphic from the ARRL manual, so may be familiar to readers. Continue reading A simple transformer model of the Guanella 1:4 balun

KB0YH’s STLcalc v2.05

In the light of Small transmitting loop calculators – a comparison a reader asked my thoughts on yet another small transmitting loop calculator, KB0YH’s STLcalc v2.05.

There are lots of small loop calculators published, and yes, I have added to the number. Most are some form of elaboration of formulas published by (Hart 1986), and given ‘imprimatur’ by ARRL (Straw 2007). These formulas are deeply flawed, see Reconciling W5QJR’s loop formulas.

For that reason, my first step in reviewing any small loop calculator is to look for hints of Hart. Continue reading KB0YH’s STLcalc v2.05

Another small efficient matching transformer for an EFHW – 2643251002 – #4 – G8GYW build and measurement

The article
Another small efficient matching transformer for an EFHW – 2643251002 – #2 – prototype bench measurement continued the development of a transformer design.

This article analyses measurements at 7.1MHz reported by Mike, G8GYW of his build of a similar transformer.

Above is G8GYW’s build, that is an inch grid on the bench. Continue reading Another small efficient matching transformer for an EFHW – 2643251002 – #4 – G8GYW build and measurement

Digital directional wattmeter – based on G8GYW – part 2

Digital directional wattmeter – based on G8GYW – part 1 laid out the basis of a project. This article discusses some changed code and calibration.

Changed code

Most of the code was changed, importing work done on other projects.

The important thing is that the code provides for a third order polynomial curve fit to measured data.

Also included is a calibration mode which displays the calculated voltage at the forward and reverse detectors given the nominal 1% voltage dividers in the circuit and the measured ADC reference voltage on this chip. Continue reading Digital directional wattmeter – based on G8GYW – part 2

Some wooly thinking on Antenna Factor online

Antenna Factor is often given / used as a parameter for an antenna (system).

An antenna with (nearly) constant AF can be quite convenient to simple field strength measurement where the AF value establishes a simple relationship between antenna terminal voltage and the external electric field strength.

Antenna Factor (AF) is the ratio of field strength to antenna terminal voltage for an antenna, dimensionally \({AF}=\frac{E}{V}=\frac{V/m}{V}=1/m\), AF units are 1/m or can be expressed in dB as \(AF_{dB}=20 \log_{10} AF \text{ dB/m}\).

It is lazy practice (though not uncommon) to simply express AF in dB, but wrong.  Continue reading Some wooly thinking on Antenna Factor online

Digital directional wattmeter – based on G8GYW – part 1

This article describes a low power digital directional wattmeter based on the design published by G8GYW at https://github.com/G8GYW/g8gyw.github.io .

The complete wattmeter was purchased on Aliexpress for around $70, principally for the hardware as it was intended to replace the firmware.

Above is the seller’s picture of the wattmeter, it has a different display to that used by G8GYW, different resolution but still an I2C OLED mono display. Continue reading Digital directional wattmeter – based on G8GYW – part 1

Diagnosis of a 9:1 transformer from NanoVNA plot – part 2

Diagnosis of a 9:1 transformer from NanoVNA plot discussed an example measurement of a 9:1 transformer on a binocular ferrite core. These are often recommended for use with Beverage antennas on 160 and 80m bands, and this was the maker’s application. In that article, I hinted that the core might not be #73 as the maker thought, or wished.

This article reports measurements of a 9:1 transformer wound on a Fair-rite 2873000202 (#73) binocular core. The pic above shows the test fixture. Continue reading Diagnosis of a 9:1 transformer from NanoVNA plot – part 2

Diagnosis of a 9:1 transformer from NanoVNA plot

A chap recently posted online a question:

I have added two 1:9 transformer (2T/6T) back to back (high side together) and measured with the nanovna – 2 port measurement, as the binocular core I am not confident BN73 or not.

Also I swiped with one port S11, with one transformer where the high side is terminated with a 470ohm resistor load.

Please advise if it can be used for beverage antenna for 160/80m.

Let’s focus on the second test, and assume that the measurements are valid (and that is often an issue), that the 470Ω resistor is close enough to 450+j0Ω and the connections are short.

Above is his s11 sweep from 1 .5-7MHz.

I suspect this is actually #43 material. Continue reading Diagnosis of a 9:1 transformer from NanoVNA plot

Digital display for DIY 25W dummy load – part 4

Digital display for DIY 25W dummy load – part 1 described a  digital display for a DIY 25W dummy load / digital wattmeter. The original research tested implementations on an Arduino Nano (ATmega328P) and Arduino Mini Zero (ATSAMD21). Though the Zero appears the better chip (32bits, better ADC resolution etc), the dev board is so noisy (ADC wise) that the Nano produces better results.

Other candidate chips are those of the newer AVR chips, and to that end some ATtiny1614 chips were purchased for trial. Unfortunately I have not seen inexpensive dev boards and the chips are not available in DIP format, these are SOIC14 (SSOP14) 150mils.

Above is the result of this morning’s cooking… three ATtiny1614 chips on DIP style break out boards for prototyping. The chips were soldered in a T962 IR reflow oven. The very long unmasked sections of pad to accommodate different width chips make for a messy looking solder job as the solder runs along the long pads. Continue reading Digital display for DIY 25W dummy load – part 4