Exploiting your antenna analyser #12

Is there a place for UHF series connectors in critical measurement at UHF?

Seeing some recent discussion by a chap who was trying to construct a low power 50Ω termination on a UHF series plug, it bought to mind the futility of using some kinds of connector for critical measurement above perhaps 100MHz.

There is a lot of conjecture about the nature of UHF series connectors, whether they act line a simple transmission line section with fairly uniform Zo, whether they are really just a lumped shunt capacitance, whether it is even important at UHF etc.

To illustrate the issue, I have assembled a simple test jig comprising an N(M)-UHF(F) adapter, UHF(M)-N(F) adapter and a 50Ω N termination (which was also used to calibrate the analyser. This set was assembled and plugged onto a calibrated AIMuhf analyser and swept from 1-500MHz… just into the UHF range (which is 300-3000MHz).

UhfTL

Above, the test jig.

Screenshot - 29_01_16 , 14_15_27

Above is an expanded scale centre of the Smith chart of the sweep. Continue reading Exploiting your antenna analyser #12

VSWR expressed as 1:n

At Expression of VSWR as a simple decimal real number I put the case for expressing VSWR simply as a real (ie a decimal) number rather than in the ratio form.

Lets remind ourselves of the meaning of VSWR (SWR).

(Terman 1955) gives a meaning for the term SWR (or VSWR).

The character of the voltage (or current) distribution on a transmission line can be conveniently described in terms of the ratio of the maximum amplitude to minimum amplitude possessed by the distribution. This quantity is termed the standing wave ratio (often abbreviated SWR)…

Standing-wave ratio=S=Emax/Emin

Terman has not dealt with the complication of short lines and lossy lines.

Note that the use of capital E implies the magnitude of voltage, so Emax/Emin must always be a positive number greater than or equal to 1.0 under that definition. Under that definition (and it has shortcomings), VSWR expressed as a ratio of m:n (and n is usually 1), m MUST be equal to or greater than n.

Screenshot - 20_01_16 , 11_35_41

Above is an extract from the brochure for Icom’s newest offering, the IC-7300. Continue reading VSWR expressed as 1:n

Exploiting your antenna analyser #11

Backing out transmission line

Often we make measurements through a section of transmission line, and the measurements are wrt the reference plane, which for many analysers is the connector on the instrument.

Some analysers, or their associated software allow the effects of the transmission line to be backed out.

Screenshot - 17_01_16 , 09_16_18

Above is a Smith chart view of measurement of a test antenna through some length of RG58. The antenna will have R<50Ω at minimum VSWR, so the angle of the complex reflection coefficient Γ will be close to 180° at the feed point. Antscope uses a different notation, but shows here the angle at the point of measurement to be -15.1°, so we need to increase it by 180–15.1=195.1°, which will take about half that electrical length of line, 97.6°. From TLLC, I calculate the length involved is 7.6m of RG58, which is an estimate that gives a starting point for backing out the cable. Continue reading Exploiting your antenna analyser #11

ANS T1.523-2001, Telecom Glossary 2000 and Return Loss

A correspondent has suggested to me that my practice of giving Return Loss as a positive dB value is wrong, citing US FS-1037C.

US FS-1037C has been superseded by ANS T1.523-2001, Telecom Glossary 2000, and the wording in the latter is identical to the former, so let’s discuss the more current document. Continue reading ANS T1.523-2001, Telecom Glossary 2000 and Return Loss

Update for FSM software (v1.11.0)

FSM has been updated to v1.11.0.

The update adds an export to Gnuplot file of the wave file to allow visual examination of the recording on which the measurements is based.

This replicates the utility of the existing Dplot export, but with the freely available Gnuplot package.

164

Above is an example of the receiver noise recording, and whilst it might not seem very interesting, it is interesting that it is of the character of white noise.

Of more interest are cases where there is a distant cyclic pattern at twice the AC power frequency which hints insulator failures on each half cycle. Some other types of periodic modulation are helpful in identifying possible sources of emissions.

References

  • Duffy, O. 2005. Field Strength Meter software (NFM). http://owenduffy.net/software/fsm/index.htm (accessed 11/01/2016).

On negative VSWR

(Terman 1955) gives a meaning for the term SWR (or VSWR).

The character of the voltage (or current) distribution on a transmission line can be conveniently described in terms of the ratio of the maximum amplitude to minimum amplitude possessed by the distribution. This quantity is termed the standing wave ratio (often abbreviated SWR)…

Standing-wave ratio=S=Emax/Emin

Note that the use of capital E implies the magnitude of voltage, so Emax/Emin must always be a positive number.

Lossless line example

Let’s look at an example of a 5Ω load on a line with Zo=50+j0Ω at 0.1MHz.

Clip 087

The standing wave is observable, the expression VSWR=Emax/Emin seems straight forward enough. The voltage along the line could be sampled and VSWR determined, seems all very practical. Continue reading On negative VSWR

Exploiting your antenna analyser #10

Measuring an RF inductor

This article walks through practical measurement of a ferrite toroidal inductor using an antenna analyser.

To be relevant practically, lets use an example from N4SPP’s end fed wire antenna on 3.6MHz. His coupling transformer uses a two turn winding on an FT240-43 core for the nominal 50Ω connection to the antenna system.

We could calculate the impedance of this winding using one of the plethora of online and desktop inductance calculators, but lets first fetch the data from the manufacturer.

Screenshot - 29_12_2015 , 11_05_50 AM

A simple statistic that is widely used is Al, and above, Fair-rite gives Al=1075nH +/-20%. Note that although they give a tolerance of +/-20%, it is not uncommon that manufactured product has greater error, they may have optimistically quoted the standard deviation and it is easy to fall outside that (37% chance). Continue reading Exploiting your antenna analyser #10

Exploiting your antenna analyser #9

Disturbing the thing you are measuring

In all measurements, we need to be careful that the measurement does not disturb the thing being measured.

This article explores an example where the instrument measurements appear wrong.

The story starts with a mobile antenna that the transceiver indicates has very high VSWR over the 40m band, though starts to decrease towards 7.350MHz.

To assist in problem identification / tuning, the antenna connector is disconnected from the radio and connected to the AA-600 analyser and a sweep taken.

Screenshot - 16_12_2015 , 5_03_16 PM

Above is the sweep, but it is quite inconsistent with the transceiver’s VSWR meter readings. The plot above looks good, a little adjustment of the tip would get it down to 7.060… but the transceiver does not see it that way. Continue reading Exploiting your antenna analyser #9

Exploiting your antenna analyser #8

Finding resistance and reactance with some low end analysers

Clip 010

There are some analysers on the market that do not display reactance X or even magnitude of reactance |X| and possibly resistance, but do display VSWR and magnitude of impedance |Z|. Continue reading Exploiting your antenna analyser #8