Designing high performance VHF/UHF receive systems – Part 6

Measurement of G/T

G/T can be measured using celestial noise sources provided the antenna can be pointed to them. The noise source that is most appropriate will depend on expected G/T, frequency, time etc.

Sun

Continue reading Designing high performance VHF/UHF receive systems – Part 6

Designing high performance VHF/UHF receive systems – Part 5

Bringing it all together

This part explains how to build a model of the entire receive system to calculate G/T.

Firstly, make an inventory of all of the system elements that you intend to model.

A model needs to be no more detailed than is necessary to provide adequate accuracy for the purpose at hand.

Continue reading Designing high performance VHF/UHF receive systems – Part 5

ARRL Test Procedures Manual (Rev L) – Noise Figure calculation

(Allison et al 2011) detail the method used by the ARRL in their test reports on equipment.

Effectively they calculate NF=-174+27-MDS where MDS is measured in the CW mode using the 500 Hz, or closest available IF filter (or audio filters where IF filters are not available).

Continue reading ARRL Test Procedures Manual (Rev L) – Noise Figure calculation

Designing high performance VHF/UHF receive systems – Part 4

Finding transceiver Teq

We have explained how to calculate Teq from Noise Figure, but most transceiver specifications do not give Teq or Noise Figure directly, in fact they don’t really contain sufficient information to reliably calculate Teq or Noise Figure.

Credible equipment reviews might provide an estimate of Noise Figure or Teq.

The best approach is to directly measure Noise Figure using a known noise generator and the Y Factor Method.

Continue reading Designing high performance VHF/UHF receive systems – Part 4

Designing high performance VHF/UHF receive systems – Part 3

Relationship between Teq and Noise Figure

In the last part, the meaning of the equivalent noise temperature of an amplifier was given.

Whilst you will find that working in Teq has advantages for this analysis, amplifier specifications may not give Teq, but may give Noise Figure.

Continue reading Designing high performance VHF/UHF receive systems – Part 3

An inexpensive current limiter for flashing and initial testing of ESCs – Mk II

There is a risk of damage when flashing ESCs. It accrues from the fact that ESCs have a three-legged H bridge and if a high and low FET are turned on simultaneously, damaging currents may flow. In fact, this can be an issue if the FETs are on together for just microseconds on each PWM cycle. Loading the wrong hex module is a recipe for disaster, it may turn on FETs in an unexpected way.

So, for safety, the ESC should be powered from a current limited power supply during flashing and initial motor testing.

In a process of continuing development, this article describes a variation on the inexpensive current limiter for flashing and initial testing of ESCs – Mk I.

Continue reading An inexpensive current limiter for flashing and initial testing of ESCs – Mk II

Designing high performance VHF/UHF receive systems – Part 2

G/T is defined as the ratio of antenna gain to total equivalent noise temperature.

For clarity, lets define those terms.

Gain

Gain of an antenna is defined (IEEE 1983) as the ratio of the radiation intensity, in a given direction, to the radiation intensity that would be obtained if the power accepted by the antenna were radiated isotropically. (Isotropically simply means equally in all directions.)

Continue reading Designing high performance VHF/UHF receive systems – Part 2

Cooling an IC2200H

IC2000HCooling2

I have an IC2200H mounted on my operating table with 25mm clearance above the radio and ample room for convection currents to assist in heat removal. It is concerning that the case temperature reaches temperatures that are not safe to touch, temperatures in excess of 75° (55° above ambient) have been measured and that has not triggered the internal temperature protection… so it could get hotter still!

Whilst it might take a while for the radio to reach high temperatures, in the long term, it must dissipate around 139W when transmitting on HIGH power setting and at ambient temperatures as high as 35° in the shack. (Rated input is 15A at 13.6V for 65W out, leaving 139W of heat to be dissipated.)

This is one of those high power mobile radios that advertises no fan as an advantage, but it is clearly not up to the task!

The objective of this change is to keep the external parts below 60°, the (ASTM standard C1055  1999) 5 second human skin burn threshold.

Continue reading Cooling an IC2200H

Mag loop or radiating dummy load?

There is a seemingly endless series of articles on small transmitting loops on the cheap.

(eHam 2014) is another, it describes a so-called magnetic loop for transmitting on 14.2Mhz using 4.57m of 2.6mm copper wire for the main loop. The author reports the bandwidth of the finished antenna as 100kHz. One of the claimed benefits is that with such wide bandwidth, a variable tuning capacitor is not required.

Continue reading Mag loop or radiating dummy load?

Designing high performance VHF/UHF receive systems – Part 1

G/T

A metric that may be used to express the performance of an entire receive system is the ratio of antenna gain to total equivalent noise temperature, usually expressed in deciBels as dB/K. G/T is widely used in design and specification of satellite communications systems.

G/T=AntennaGain/TotalNoiseTemperature 1/K

Example: if AntennaGain=50 and TotalNoiseTemperature=120K, then G/T=50/120=0.416 1/K or -3.8 dB/K.

Continue reading Designing high performance VHF/UHF receive systems – Part 1