Design / build project: Guanella 1:1 ‘tuner balun for HF’ – #6

Sixth part in the series documenting the design and build of a Guanella 1:1 (current) balun for use on HF with wire antennas and an ATU.

This article documents measurement of impedance.

Impedance measurement

AEP01

The antenna system is a G5RV with tuned feeders (9m of home made 450Ω open wire). The tuned feeders terminate on the balun described in this series, and it is located on the outside of the antenna feed entrance panel shown above. Continue reading Design / build project: Guanella 1:1 ‘tuner balun for HF’ – #6

Design / build project: Guanella 1:1 ‘tuner balun for HF’ – #5

Fifth part in the series documenting the design and build of a Guanella 1:1 (current) balun for use on HF with wire antennas and an ATU.

Installation / testing

AtuBalun201

The balun packaged in a non-conductive housing was designed to have minimal stray capacitance to ground to minimise common mode current with asymmetric loads.

AEP01

Above, the balun is attached to the exterior side of the antenna feed entrance panel using a male to male N adapter, done up very tight. The feed line connections are liberally coated with marine grease to prevent ingress of water and oxygen, a measure to reduce corrosion. Continue reading Design / build project: Guanella 1:1 ‘tuner balun for HF’ – #5

Improved cooling for the MFJ-949E

vt_00032

At A look at internal losses in a typical ATU I demonstrated that it is quite easy to raise the temperature of the coil in the MFJ-949E to an unsafe level, even with quite modest power.

The most heat sensitive component in this ATU is the coil, specifically the coil supports which are probably polystyrene, and the glass transition temperature of polystyrene is around 100°.

This article documents modification of my MFJ-949E to reduce the risk of damage under some operating conditions. Continue reading Improved cooling for the MFJ-949E

End fed Zepp

The so-called End fed Zepp (EFZ) is often cited as the basis for many more recent antenna designs, and is leveraged to provide and explanation… though few hams understand how the EFZ actually works.

End fed Zepp

Screenshot - 13_03_16 , 08_38_13

Above is a diagram from the ARRL Antenna Handbook  (Silver 2011).

Though a short conductor is shown to the right of the right hand feed line wire, the length is not specified or discussed in the accompanying text. It is popularly held that this is a “counterpoise” that provides a path for current equal to that flowing left into the main horizontal wire.

Let us explore the EFZ using NEC. The models are a reflection left to right of the above diagram, ie the feed is on the left hand end. Continue reading End fed Zepp

Thinking about SOTA, EFHW and EMR safety

There seems to have been a revival in use of the so-called End Fed Half Wave antenna.

The prospect that a small radio such as the FT817, a magic match box and 10m of wire makes a good 20m field station appeals to many a SOTA enthusiast.

Let us model a scenario with a FT817 powered by internal battery and sitting on an insulating platform (eg a pack) 0.3m above natural ground, a 10m wire strung up into a tree at a 45° angle, and a 1m long mic cord stretched up at 45° in the other direction. The is the popular so-called ‘no counterpoise’ configuration.

A simplified model of just the current paths without regard to the bulk of the radio, or the effect of the helix of the mic cord illustrates an approximate current distribution. The model uses 1W RF input to the antenna over ‘average ground’ (0.005,13).

 

Clip 142

Above is a plot of the current distribution. Current is a minimum at the open ends, a boundary condition for the problem, and maximum in the middle of the half wave. We expect H field to be greatest near the current maximum, and E field to be greatest near the current minima. Continue reading Thinking about SOTA, EFHW and EMR safety

RG-6/U for lower HF

RG-6 has become a popular 75Ω transmission line for ham stations, and I have used it to good effect in many applications.

(Duffy 2007) extolled the virtues and gave implementation information, but cautioned:

Some types of RG−6/U use a CCS centre conductor and will have higher loss at low frequencies that shown in Fig 1, depending on the thickness of the copper cladding which may vary from cable to cable.

I have used RG-6/U with solid copper centre conductor widely on HF, and measured performance has always been consistent with expectation.

However, RG-6/U with solid copper centre conductor has become very hard to obtain, and products that remain available such as Belden 1694A are quite expensive.

This article documents measurements at low HF on a 100m roll of Quad shield RG-6/U purchased for UHF TV cabling.

The method used was to measure input impedance of the open circuit terminated 100m line section at a range of resonant and antiresonant frequencies, and from those to calculate Matched Line Loss (MLL) in dB/m.

Screenshot - 25_02_16 , 10_17_41

Above is an example measurement around 3.74MHz. Zin is 213.4Ω at 3.74MHz. In this case I have used an AIMuhf one port analyser, but any instrument that can measure impedance in the range 10-500Ω would suit this particular scenario. Measurement of short low loss cables will yield more extreme impedances and may not be within range of some instruments. Continue reading RG-6/U for lower HF

KL7AJ quick quiz 21/02/2016

Eric posed a quick quiz for the masses to test their knowledge under his heading “Do you really understand impedance matching?”

For your convenience, I will quote his challenge here.

Screenshot - 21_02_16 , 08_04_51

All connections are made with low-loss coaxial cable. The antenna tuner is high quality with negligible losses.
According to standard conversion charts, we find that 4:1 SWR will give us 36% reflected power. Keep that number handy.
Now, we set up the experiment. First, set the slugs on BOTH wattmeters to read REFLECTED power.
Turn on the transmitter, and adjust the antenna tuner for zero reflected power on Bird #1. Switch to forward power, and set transmitter output to exactly 100 watts. Readjust antenna tuner if necessary to achieve zero reflected power, while maintaining 100 watts forward.
Go to Bird #2 and confirm that reflected power is 36 watts.
Question: What is the FORWARD power on Bird Wattmeter #2? How you answer this question determines if you understand the conjugate match theorem or not.

Let us assume that the transmission lines are 50Ω, and that the Bird wattmeters are calibrated for 50Ω.

So, to extract the key information, we have a lossless system (KL7AJ is a lossless kind of guy) and the load is stated to be VSWR=4. Continue reading KL7AJ quick quiz 21/02/2016

Design / build project: Guanella 1:1 ‘tuner balun for HF’ – #4

Fourth part in the series documenting the design and build of a Guanella 1:1 (current) balun for use on HF with wire antennas and an ATU.

Packaging

The prototype fits in a range of standard electrical boxes. The one featured here has a gasket seal (a weep hole would be advisable in a permanent outdoor installation).

AtuBalun201

Above, the exterior of the package with M4 brass screw terminals each side for the open wire feed line, and an N(F) connector for the coax connection. N type is chosen as it is waterproof when mated.

AtuBalun203

The interior shows the layout. The wires use XLPE high temperature, high voltage withstand, moderate RF loss insulation. Two short pieces of 25mm electrical conduit serve to position the balun core against the opposite side of the box, and a piece of resilent packing between lid and core holds the assembly in place.

AtuBalun202

Differently to the example shown in the earlier articles, this prototype uses twisted PTFE insulated wires which have voltage breakdown higher than the XLPE shown earlier.

Clip 124

The self resonant frequency of the built balun was measured as 7.4MHz and the predictive model above calibrated. The balun has high choking impedance on the lower half of HF.

Reconciling my #52 choke design tool with G3TXQ’s measurements

A correspondent wrote with concern of the apparent difference between graphs produced by my #52 choke design tool with a graph published by G3TXQ of his measurement of 11t on a pair of stacked FT240-52 cores.

I published a note earlier about my concerns with a similar graph by G3TXQ compared to the Fairrite datasheet, and he reviewed the data, found the error and published a corrected graph.

FT240-52x2-11t

The corrected graph above might at first glance appear different to my model’s graphs, and the first obvious difference is that G3TXQ uses a log Y scale (which is less common). The effect of the log scale is to compress the variation and give the illusion perhaps that in comparison with other plots, this balun has a broader response.

Screenshot - 09_02_16 , 18_29_42

To compare the two, I have roughly digitised G3TXQ’s graph above and plotted the data over that from my own model (with linear Y scale). Continue reading Reconciling my #52 choke design tool with G3TXQ’s measurements

Exploiting your antenna analyser #14

Insertion Loss, Mismatch Loss, Transmission Loss

A correspondent asks about the effect of RCA connectors at HF on his proposed noise bridge. The question is very similar to that considered at Exploiting your antenna analyser #13 for UHF series connectors.

I have made a simple measurement of a BNC 50Ω termination (to check calibration) then inserted a BNC-RCA and RCA-BNC adapter.

Measurements of input impedance only for such an electrical short transmission line will not give useful data for determining TransmissionLoss which is the result of conversion of RF energy to heat. The measurements do give ReturnLoss and given that InsertionLoss=MismatchLoss+TransmissionLoss, they set a lower bound for InsertionLoss.

To jump to the chase, it also has a Smith chart plot up to 200MHz that suggests it might be well modelled by a TL segment of 30-35Ω.

Screenshot - 07_02_16 , 16_58_55

Above is a plot of VSWR when Zref is adjusted for the flattest response from DC, and it can be seen that with Zref=33, response is quite flat to 200MHz. Continue reading Exploiting your antenna analyser #14