Rigexpert Antscope v4.3.1 dowload link?

At Rigexpert Antscope v4.3.1 released I commented on a new release of Antscope.

Correspondents have asked where I obtained v4.3.1.

Well, it seems the Rigexpert website is broken again, the URL to list the Antscope downloads produces garbage. Nevertheless, you can get a directory listing at https://www.rigexpert.com/files/antscope/ and yes, you will note that v4.3.1 is not listed… so it seems to have been either pulled due to defects or it is just a consequence of the web site problems.

Little loss, I use v4.2.57 on Rigexpert’s advice as it has better scales for impedance plots… and v4.2.57 is still published (at the time or writing) https://www.rigexpert.com/files/antscope/antscope040257.zip .



LP-100A impedance measurement

A correspondent wrote seeking clarification of the Telepost LP-100A claims re impedance measurement in the context of some of my previous articles on the sign of reactance.

I could see several mentions in the LP-100A manual and the LP_100Plot documentation and they do seem a little inconsistent.

The LP-100A manual states very clearly:

Note: The LP-100A cannot determine the sign of X automatically.


If you QSY up from your current frequency, and the reactance goes up, then the reactance is inductive (sign is “+”), and conversely if it goes down, then the reactance is capacitive (sign is “-“). A suitable distance is QSY is about 100 kHz or more. The LP-Plot program has the ability to determine sign automatically, since it can control your transmitter’s frequency. When it plots a range of frequencies, it uses the slope of the reactance curve to determine sign, and plots the results accordingly.

The first part states clearly that the instrument cannot directly measure the sign of reactance, and presumably measures the magnitude of reactance |X|.

Lets explore the second part in light of the overarching statement of the first part.

Above is the calculated R and X looking into 7m of Belden RG58C/U with a load 25+j0Ω. Also shown is |X|(as would be measured by the LP-100A) and calculated magnitude of phase of R,X, |φ|. Continue reading LP-100A impedance measurement

Rigexpert Antscope v4.3.1 released

It seems yet another new version of Rigexpert Antscope has been released, and it maintains the scale limits available for R,X plots to +/-2000Ω, it still does not allow the range permitted by v4.2.57 (+/-5000Ω).

No change details provided by Rigexpert.

Back to v4.2.57, though it is very likely it has undisclosed defects fixed in later releases.

Bottom line is that if you want an analyser with direct graphing of impedances over 2000Ω (eg measuring common mode choke impedance), think of a different analyser.


Ten-tec on the meaning of SWR

In a recent long running thread on impedance matching on one of the online fora, one poster offered the Ten-tec 540 manual as a reference for clarity on the subject (which of course got murkier with every posting as contributors added their version to the discussion).

The Ten-tec 540 was made in the late 1970s, one of the early radios with a solid state PA, and their manual give the Technical facts of life to guide new owners to successful exploitation of this new technology.

Amongst the technical facts of life is this little gem:

The standing wave ratio is a direct measure of the ratio between two impedances, ie an SWR of 3 to 1 tells us that one impedance is three times the other. Therefore the unknown impedance can be three times as large or three times as small as the known one. If the desired impedance that the transceiver wants to see is 50 ohms, and SWR of 3 to 1 on the line may mean a load impedance of either 150 or 17 ohms. …

This says that the SWR wrt 50Ω implies just two possible impedances, he is very wrong… it implies an infinite set of possible impedances. Continue reading Ten-tec on the meaning of SWR

Reflected power alarm for the MFJ-993B

This article describes an add-on to a MFJ-993B auto ATU to provide an audible alarm when reflected power exceeds a set threshold. A deficiency of the original design IMHO.

The solution uses the generic heating / cooling controller (hcctl) configured for its alarm function only, including a function to silence the alarm.

screenshot-03_12_16-18_34_50Above is the directional coupler part of the MFJ-993B. The REF test point is designed to present voltages within the range 0-5V when used within the stated power ratings. Continue reading Reflected power alarm for the MFJ-993B

Radio-Kits SWR meter – build and review

This article describes my build of a Radio-Kits SWR meter (v1.1) and post implementation review.

Advertised features:

  • HF coverage – 1.8-30MHz
  • Displays VSWR, forward power, reverse power and supply voltage
  • Peak reading power meter
  • Bar graph or numerical format
  • Reverse power alarm with adjustable threshold
  • Auto turn on in presence of RF – sensitivity about 1 watt
  • Optional turn off after preset time – 10-240 seconds
  • Backlit LCD display with variable brightness
  • Reverse polarity protection

I purchased the kit some years ago, and on receiving it and reviewing the circuit I formed the view that it was likely to have unacceptable Insertion VSWR on 1.8Mhz, and probably 3.5MHz bands… so I lost interest in assembling the kit. However, I have belatedly constructed the kit, calibrated and tested it.


The kit is supplied as a PCB and parts, no casework is supplied.

The board was difficult to solder, the strain relieved ground plane connections of components have very little donut to contact for heat transfer and are much harder to solder than the other pads. The strain relief is a dubious feature that makes soldering difficult.


Above, the kit assembled in a die-cast aluminium box. An opening for the LCD was milled into the box, and holes drilled for the rest of the fit up. The kit does not lend itself to this boxing as the buttons out the top and display out the front are a problem to fit up. A poor mechanical design.


Above is the interior of the box showing the LCD display and the external BNC connectors fitted (substituted for the ubiquitous UHF connectors supplied with the kit). Continue reading Radio-Kits SWR meter – build and review

Grebenkember’s original Tandem match

(Grebenkemper 1987) describes a directional coupler that has become very popular, especially in commercial implementation.

screenshot-22_11_16-07_23_25The simplified circuit above from Grebenkemper’s article illustrates the key elements of the directional coupler.

An important detail of the design is that the primary of the right hand transformer appears in shunt with the antenna load, and the magnetising impedance of that transformer core compromises Insertion VSWR. It is important that the magnetising impedance is sufficiently high (or the admittance sufficiently low) to not cause significant Insertion VSWR.
Continue reading Grebenkember’s original Tandem match

KitsAndParts.com QRP SWR bridge

The project is to build a test a couple of QRP VSWR detectors by KitsAndParts.com (http://www.kitsandparts.com/bridge.php) rated at 10W.


Above are the completed kits.


Above is the schematic. The bridge uses a type of Sontheimer coupler (Sontheimer 1966) and these are commonly poorly designed. The first question is whether the magnetising impedance of T2 which appears in shunt with the load is sufficiently high to not give rise to poor insertion VSWR. Continue reading KitsAndParts.com QRP SWR bridge

Walter Maxwell’s teachings on system wide conjugate matching

Walt Maxwell (W2DU) made much of conjugate matching in antenna systems, he wrote of his volume in the preface to (Maxwell 2001 24.5):

It explains in great detail how the antenna tuner at the input terminals of the feed line provides a conjugate match at the antenna terminals, and tunes a non-resonant antenna to resonance while also providing an impedance match for the output of the transceiver.

Walt Maxwell made much of conjugate matching, and wrote often of it as though at some optimal adjustment of an ATU there was a system wide state of conjugate match conferred, that at each and every point in an antenna system the impedance looking towards the source was the conjugate of the impedance looking towards the load.

This is popularly held to be some nirvana, a heavenly state where transmitters are “happy” and all is good. Happiness of transmitters is often given in online discussion by hams as the raison d’être for ATUs . Continue reading Walter Maxwell’s teachings on system wide conjugate matching