DK7ZB’s balun

(Steyer nd) describes the DK7ZB balun / match for VHF and UHF Yagis.

unsymm_engl

To understand how the “DK7ZB-Match” works look at the left picture. Inside the coax cable we have two currents I1 and I2 with the same amount but with a phase shift of 180°.

No. At any point along the coaxial line, a current I on the outer surface of the inner conductor causes an equal current in the opposite direction on the inner surface of the outer conductor.

As the currents are shown with the designated directions, I2=I1, not I2=I1<180.

A consequent simplification is that I4=I2-I3=I1-I3.

There is an issue with the current arrow I3 in the lower right of the diagram. It might imply that the only current in the conductors is I3, but the current between the nearby node and lower end of the shield is I3-I1.

If the structure was much much shorter than the wavelength, there would be negligible phase change in currents along the structure, so I1 would be uniform along the centre conductor, I2 uniform along the inside surface of the outer conductor, and I3 uniform along the outer surface of the outer conductor.

The diagram notation does show that I3 (which is equal to the dipole drive imbalance) is uniform along the structure, and that I3 flows to ground.

DK7ZB goes on:

If we connect a dipole or the radiator of a Yagi direct to the coax, a part of I2 is not running to the arm 2 but down the outer part of the coax shield. Therefore I1 and I4 are not in balance and the dipole is fed asymmetric.

But how can we suppress the common-mode current I3? A simple solution is to ground the outer shield in a distance of lambda/4 at the peak of the current.

So, the length of the structure is in fact a quarter wavelength electrically, or close to it to achieve the choking effect. I3 will be in the form of a standing wave with current maximum at the lower (‘grounded’) end, and current minimum at the upper end.

It happens also that his usual configuration of this balun is that there is a standing wave on the inside of the coax, and so I1 and I2 are not uniform along the conductor, and whilst it is relevant to the designed impedance transformation, it is inconsequential to reduction of dipole current imbalance.

DK7ZB continues with the development of his variation of a Pawsey balun:

But now we get a new interesting problem: For the transformation 28/50 Ohm we need a quarterwave piece of coax with an impedance of 37,5 Ohm (2×75 Ohm parallel). The velocity of the wave inside the coax is lower than outside (VF = 0,667 for PE).

The outside of the shield has air (and a litle bit of insulation) in the surrounding and VF = 0,97. For grounding the common mode currents this piece should have a length of 50 cm, with a VF = 0,667 and a length of 34,5 cm this piece of coax is to short. By making a loop of this two cables as shown in the picture down we get an additional inductivity and we come closer to an electrical length of lambda/4. Ideal is coax cable with foam-PE and a VF = 0,82

schleifeAbove is DK7ZB’s implementation of his balun with the loop and additional inductivity.

I copied the above implementation and measured the common mode impedance Zcm.

Dk7zbBalun144

Above is the Zcm measurement. There is a quite narrow self resonance where Zcm is quite high for about 10MHz bandwidth centred on 125MHz, but at 144MHz Zcm=83-j260Ω which is too low to qualify as a good common mode choke.

Like all narrowband / tuned common mode chokes, tuning to the desired frequency band is essential to their effective operation.

Like most published balun designs, this one is published without measurements to demonstrate its operation or effectiveness.

Links

Differential flux leakage in a Guanella 1:1 balun – an experiment

The article reports a simple experiment on the balun described at Low power Guanella 1:1 tuner balun using a pair of Jaycar LF1260 suppression sleeves to assess the loss with near zero common mode current.

This test would not subject dielectrics to high electric field strength.

LF1260x2-01

The balun above had the two wires at one end connected together, and a current of 1.41A at 7MHz passed between the terminals of the device at the other end.

The device so configured looks like a s/c transmission line stub and we would expect that the input impedance would be a very small resistance and small inductive reactance. Continue reading Differential flux leakage in a Guanella 1:1 balun – an experiment

Differential flux leakage in a Guanella 1:1 balun

This article has been copied as reference for a new article from my VK1OD.net web site which is no longer online. The article may contain links to articles on that site and which are no longer available.

I have been asked by a correspondent to comment in the context of my model of a Guanella 1:1 balun wound on a ferrite toroid (Duffy 2008a) on the impact of differential flux leakage as discussed in the ARRL 2011 Handbook on the predicted losses in a Guanella 1:1 balun using a ferrite toroidal core

ARRL

The ARRL 2011 Handbook (Silver 2011  20.23) states [i]f the line is made up of parallel wires (a bifilar winding), a significant fraction of the flux associated with differential current will leak outside the line to the ferrite core. Leakage flux can exceed 30% of the total flux for even the most tightly-spaced bifilar winding.

This might suggest that differential current will contribute significantly to balun core losses and consequently transmission loss. The claim is made without explanation or substantiation, or without making conclusions about any resultant loss. This is the makings of fear, uncertainty and doubt (FUD), and hardly the enlightenment that readers might expect. Continue reading Differential flux leakage in a Guanella 1:1 balun

Thermal observations on Neosid 28-053-31 ferrite toroid

The Neosid 28-053-31 ferrite toroid is used in my HF Balun Project.

This article reports some thermal measurements and analysis made in relation to the project some years ago, but possibly of interest.

HfBalunAbove is the Neosid 28-053-31 ferrite toroid in an implementation of my HF Balun Project using XLPE wire for the winding. The core is a NiZn ferrite toroid of 63x26x19mm (larger than FT240 size). Continue reading Thermal observations on Neosid 28-053-31 ferrite toroid

Interpreting temperature rise in ferrite cored RF transformers and inductors

 

FT240-43-11t

We often see statements by hams where they draw inference from observed temperature rise of a ferrite core at RF. Lets consider the following statement.

The FT-240-43 balun MUST be quite efficient as it barely increased in temperature over a 5 minute over at 100W on SSB.

For the purpose of this explanation, lets assume barely increased in temperature means 5° increase in temperature from cold. Under these conditions, we can reasonably assume that almost all of the heat input to the core is consumed in raising the core temperature. Continue reading Interpreting temperature rise in ferrite cored RF transformers and inductors

Attempting to reconcile W5DXP & G3TXQ’s comparison of K and 52 mix ferrites #2

This is a follow up to Attempting to reconcile W5DXP & G3TXQ’s comparison of K and 52 mix ferrites.

Steve saw the above article and revisited the FT240-52 measurements which he apparently did, and found them wanting: Continue reading Attempting to reconcile W5DXP & G3TXQ’s comparison of K and 52 mix ferrites #2

Sevick’s comments on selection of ferrite mix

(Sevick 2001) discusses efficiency of transmission line transformers that use nickel-zinc ferrites in Chapter 11 “Materials and power ratings” applied to broad band baluns.

In Chapter 11 he reports a range of measurements of two different basic configurations, a 4:1 Ruthroff balun and a 4:1 autotransformer and uses nickel zinc ferrite cores of types that are no longer readily available (and none were the K and 52 mixes he is said to have recommended).

The types of transformers he built are ones where core flux (and so core loss) at low frequencies is approximately proportional to the quotient of voltage impressed across the input terminals and number of turns, so core losses can be decreased by reducing voltage and/or increasing turns. These are Voltage Baluns, see Definition: Current Balun, Voltage Balun.

By contrast, the flux (and so the core losses) in Current Baluns is proportional to the common mode current times turns, and in antenna systems, that cannot be simply calculated using back of the envelope ohms law (though pundits often do it), see Baluns – Rule 500.

So Seviks experiments and discussion are not directly applicable to Current Baluns, yet they are cited by manufacturers, sellers, and users as rationale for their designs using nickel-zinc ferrites for Current Baluns. Continue reading Sevick’s comments on selection of ferrite mix

Attempting to reconcile W5DXP & G3TXQ’s comparison of K and 52 mix ferrites

Steve (G3TXQ) posted a graph comparing Cecil’s (W5DXP) measurements of two turns on FT240-52 and FT240-K.

It is interesting to reconcile the #52 curves with Fairrite’s datasheets. A simple reconciliation is to compare results at the frequency where µ’ and µ” curves cross over. Continue reading Attempting to reconcile W5DXP & G3TXQ’s comparison of K and 52 mix ferrites

Ferrite K mix

Among forum experts, there are ready recommendations for the ideal ferrite material (or mix) for a balun, often without knowing any detail of the application.

The ‘magic’ mixes include K. Perhaps they are devotees of Sevick.

Over some years I have searched for manufacturer’s data on K mix, and found only two references:

  • Amidon who give a very brief table summarising characteristics, inadequate for RF inductor design; and
  • Ferronics who give characteristic curves, albeit in less common format.

Problem is that Ferronics µi is 125 against Amidon’s 290… so their K materials are different.

One has hoped that an interested competent person might have made measurements of some samples from Amidon to give full characteristic curves, it isn’t that hard. Continue reading Ferrite K mix