Loss of windowed ladder line at MF/HF/VHF

A ham in the need of help recently asked for advice on eHam about the use of Wireman Ladder Line and the like.

After a fairly well considered, detailed and lengthy answer from on online expert, another online expert stepped in to confuse the matter with conflicting advice:

Wire resistance (loss due to current ) is not a factor with higher voltages typically seen in high impedance antenna feed applications. Attenuation loss is a factor depending on dielectric properties in VHF and UHF frequencies. Their is little skin effect below 50 MHz in wire antennas and feeds.

This comes down to line strength. I would go with the solid Copperweld for HF antenna work.

Let’s examine the above quote. Continue reading Loss of windowed ladder line at MF/HF/VHF

Messi & Paoloni Ultraflex 7 coax cable

Messi & Paoloni Ultraflex 7 coax cable is being marketed as similar to RG-213 in performance, but 7mm overall (against 10mm).

There is lots of comment by online experts questioning the claims, and critical of things like the braid coverage, copper foil etc, but without real evidence that it does not live up to specification.

Accepting the specifications for Ultraflex 7 and Belden 8267 (B8267, RG-213) for a moment, how do they compare.

Let’s take the loss factors calculated for TLLC and de-construct the conductor and dielectric loss for each line type.

Above is a comparison of the cables. Continue reading Messi & Paoloni Ultraflex 7 coax cable

Surecom SW-102 VSWR meter review

I recently purchased a Surecom SW-102 VSWR meter. It looked a little like a supercharged RedDot copy.


Above the Surecom SW-102 VSWR meter with backlight and photographed under normal interior lighting. The display lacks contrast, and overall is difficult to read due to size of text, fonts used, and lack of contrast. (The pic is taken with a screen protector installed, but the evaluation is based on the bare meter with original protective film removed as it degraded readability.) Continue reading Surecom SW-102 VSWR meter review

Does common mode current flow inside coax?

The term “common mode current” applied to coaxial transmission lines is bandied about with abandon these days in online fora, awareness of its existence has increased if not understanding.

A simplistic analysis is that in TEM mode, ONLY differential current is supported inside a coaxial line, ie that at any point the current on the outer surface of the inner conductor is exactly equal to a current in the opposite direction on the inner surface of the outer conductor.

But, lets look at the wider context of the meaning of common mode current when a uniform coaxial line is connected to an antenna system. Whilst an antenna might have an obvious two terminal connection to the feed line, in the presence of ground, the current in those two terminals are not necessarily equal and opposite. Continue reading Does common mode current flow inside coax?

Exploiting your antenna analyser #26

Find coax cable velocity factor using a very basic analyser

A common task is to measure the velocity factor of a sample of coaxial transmission line using an instrument that lacks facility to backout cable sections or measure OSL calibration (as discussed in other articles in this series). The older models and newer budget models often fall into this category.

The manuals for such instruments often explain how to measure coaxial cable velocity factor, and the method assumes there is zero offset at the measurement terminals (whether they be the built-in terminals or some fixture / adapters). In fact even the connectors are a source of error, especially UHF series connectors.

It is the failure to read exactly Z=0+j0Ω with a S/C applied to the measurement terminals that adversely impacts efforts to measure resonant frequency of a test line section.

The method described here approximately nulls out offsets in the instrument, measurement fixture, and even in the connectors used and for that reason may sometimes be of use with more sophisticated analysers.
Continue reading Exploiting your antenna analyser #26

Exploiting your antenna analyser – contents

A convenient list of ‘Exploiting your antenna analyser’ and short subject sub-titles, a table of contents for the series as it grows.

Exploiting your antenna analyser #29 Resolving the sign of reactance – a method – Smith chart detail

Exploiting your antenna analyser #28 Resolving the sign of reactance – a method

Exploiting your antenna analyser #27 An Insertion VSWR test gone wrong

Exploiting your antenna analyser #26 Find coax cable velocity factor using a very basic analyser

Exploiting your antenna analyser #25 Find coax cable velocity factor using an antenna analyser without using OSL calibration

Exploiting your antenna analyser #24 Find coax cable velocity factor using an antenna analyser with OSL calibration

Exploiting your antenna analyser #23 Seeing recent discussion by online experts insisting that power relays are not suitable to RF prompts an interesting and relevant application of a good antenna analyser Continue reading Exploiting your antenna analyser – contents

Rigexpert Antscope v4.3.1 dowload link?

At Rigexpert Antscope v4.3.1 released I commented on a new release of Antscope.

Correspondents have asked where I obtained v4.3.1.

Well, it seems the Rigexpert website is broken again, the URL to list the Antscope downloads produces garbage. Nevertheless, you can get a directory listing at https://www.rigexpert.com/files/antscope/ and yes, you will note that v4.3.1 is not listed… so it seems to have been either pulled due to defects or it is just a consequence of the web site problems.

Little loss, I use v4.2.57 on Rigexpert’s advice as it has better scales for impedance plots… and v4.2.57 is still published (at the time or writing) https://www.rigexpert.com/files/antscope/antscope040257.zip .



LP-100A impedance measurement

A correspondent wrote seeking clarification of the Telepost LP-100A claims re impedance measurement in the context of some of my previous articles on the sign of reactance.

I could see several mentions in the LP-100A manual and the LP_100Plot documentation and they do seem a little inconsistent.

The LP-100A manual states very clearly:

Note: The LP-100A cannot determine the sign of X automatically.


If you QSY up from your current frequency, and the reactance goes up, then the reactance is inductive (sign is “+”), and conversely if it goes down, then the reactance is capacitive (sign is “-“). A suitable distance is QSY is about 100 kHz or more. The LP-Plot program has the ability to determine sign automatically, since it can control your transmitter’s frequency. When it plots a range of frequencies, it uses the slope of the reactance curve to determine sign, and plots the results accordingly.

The first part states clearly that the instrument cannot directly measure the sign of reactance, and presumably measures the magnitude of reactance |X|.

Lets explore the second part in light of the overarching statement of the first part.

Above is the calculated R and X looking into 7m of Belden RG58C/U with a load 25+j0Ω. Also shown is |X|(as would be measured by the LP-100A) and calculated magnitude of phase of R,X, |φ|. Continue reading LP-100A impedance measurement

Rigexpert Antscope v4.3.1 released

It seems yet another new version of Rigexpert Antscope has been released, and it maintains the scale limits available for R,X plots to +/-2000Ω, it still does not allow the range permitted by v4.2.57 (+/-5000Ω).

No change details provided by Rigexpert.

Back to v4.2.57, though it is very likely it has undisclosed defects fixed in later releases.

Bottom line is that if you want an analyser with direct graphing of impedances over 2000Ω (eg measuring common mode choke impedance), think of a different analyser.


Ten-tec on the meaning of SWR

In a recent long running thread on impedance matching on one of the online fora, one poster offered the Ten-tec 540 manual as a reference for clarity on the subject (which of course got murkier with every posting as contributors added their version to the discussion).

The Ten-tec 540 was made in the late 1970s, one of the early radios with a solid state PA, and their manual give the Technical facts of life to guide new owners to successful exploitation of this new technology.

Amongst the technical facts of life is this little gem:

The standing wave ratio is a direct measure of the ratio between two impedances, ie an SWR of 3 to 1 tells us that one impedance is three times the other. Therefore the unknown impedance can be three times as large or three times as small as the known one. If the desired impedance that the transceiver wants to see is 50 ohms, and SWR of 3 to 1 on the line may mean a load impedance of either 150 or 17 ohms. …

This says that the SWR wrt 50Ω implies just two possible impedances, he is very wrong… it implies an infinite set of possible impedances. Continue reading Ten-tec on the meaning of SWR