N6THN’s novel balun

One sees lots of articles and videos on how to make a current balun suited to a low VSWR antenna. This one was recommended in an online discussion on QRZ.com. N6THN might not have invented this balun, but he made a video of it.

In this case, it is described in the referenced video as part of a half wave dipole antenna where you might expect the minimum feed point VSWR to be less than 2.

Apologies for the images, some are taken from the video and they are not good… but bear with me.

The balun as described

Above is the ‘schematic’ of the balun.Note the entire path from rig to dipole. Continue reading N6THN’s novel balun

Comment on KN5L on balun CMRR – series through impedance fixture

In recent articles, I flagged that on some of John’s VNWA plots he showed flawed impedance calculations using VNWA’s t2s inbuilt function.

The function t2s is documented in the VNWA help.

t2s is a VNWA built in function intended to solve the so-called s21 series through fixture for impedance measurement of two terminal Zx connected between Port 1 and Port 2.

None of John’s test fixtures were equivalent to the circuit above required for valid t2s transformation. Continue reading Comment on KN5L on balun CMRR – series through impedance fixture

Comment on KN5L on balun CMRR – two wire line example

The article Comment on KN5L on balun CMRR dealt with model and measurement of John’s coaxial choke in fixture, dealt with first because it is a simpler model. This article builds on that and models the balun wound with a pair of wires.

Above is the subject balun in fixture.

John’s schematic shows the balun as coupled coils, but that does not capture the transmission line transformation that occurs in the actual device. Again the test fixture is used without explanation. Continue reading Comment on KN5L on balun CMRR – two wire line example

Comment on KN5L on balun CMRR – coax example

One of the ham fashions of proposed solutions to characterising a balun is to find the Common Mode Rejection Ratio (a term carried over from other applications, eg voltage driven operational amplifiers).

(Anaren 2005) explains a method of finding balun CMRR. Anaren gives a definition of CMRR:

Common Mode Rejection Ratio is defined and the ratio between the differential mode insertion loss/gain versus the common mode signal loss or gain.

Note that in a passive system, CMRR (or CMR) in dB will usually be positive, and the larger the better. You might even think that the plain English meaning of the words Common Mode Rejection Ratio would suggest that a large ratio (or high +ve dB value) would mean most rejection, goodness. Such a meaning would be quite consistent with that of CMRR (CMR) applied to operation amplifiers (for a very long time).

Anaren does not mention applying the CMRR statistic to antenna systems. I have commented elsewhere on the lack of utility of CMRR in analysing common antenna systems.

Then immediately after the above definition, they give a formula which implies the inverse:

\(CMRR=\frac{S_{1c}}{S_{1d}}\) and goodness would be a tiny fractional value, or a small (-ve) dB value.

John, KN5L, has published his own solution to balun characterisation in some online forums. Continue reading Comment on KN5L on balun CMRR – coax example

Baofeng BF-T1 (BF-9100) – initial impressions

I purchased two inexpensive Baofeng BF-T1 UHF portables (hand-helds) for use around the yard.

Key features:

  • LiIon pouch single cell battery that may be obtainable longer than proprietary batteries;
  • micro USB charger interface, internal charge / battery management;
  • programmable with CHIRP (channel table only);
  • chanellised operation, lockable keypad;
  • CTCSS support;
  • integrated antenna;
  • small and lightweight (110g with belt clip);
  • inexpensive.

The radio has been in the market for more than three years, so one might hope that design issues have been fixed in ‘mature’ product. Continue reading Baofeng BF-T1 (BF-9100) – initial impressions

Comparing sensitivity figures of an AM receiver and SSB receiver

Receiver sensitivity is commonly given as some signal level, say in µV, for a given Signal to Noise ratio (S/N), say 10dB. For AM, the depth of sinusoidal modulation is also given, and it is usually 30%. In fact these are power ratios in the context of and some nominal reference receiver input impedance.

In fact what is commonly measured is Signal + Noise to Noise ratio, and of course this ratio is one of powers. For this reason, specifications often give (S+N)/N.

This article discusses those metrics in the context of ‘conventional’ receivers and introduces the key role of assumed bandwidth through the concept of Equivalent Noise Bandwidth..

Let’s consider the raw S/N ratio of an ideal AM detector and ideal SSB detector.

Raw Signal/Noise

AM

 

Above is a diagram of the various vector components of an AM signal with random noise, shown at the ‘instant’ of a modulation ‘valley’. The black vector represents the carrier (1V), the two blue vectors are counter rotating vectors of each of the sideband components, in this case with modulation depth 30%, and the red vector is 0.095V of random noise rotating on the end of the carrier + sideband components. Continue reading Comparing sensitivity figures of an AM receiver and SSB receiver

Low power Guanella 1:1 balun with low Insertion VSWR using a Fair-rite 2×2631540002 – measurement of Zcm

Low power Guanella 1:1 balun with low Insertion VSWR using a pair of Fair-rite 2631540002 suppression sleeves – design workup presented a desk design of a low power balun. This article presents measurement of common mode impedance Zcm of a prototype using a nanoVNA.

Above is the prototype 2631540002×2 wound with 3.5t of RG316. Continue reading Low power Guanella 1:1 balun with low Insertion VSWR using a Fair-rite 2×2631540002 – measurement of Zcm