Exploiting your antenna analyser #16

Measure inductor using OSL calibration

At Measuring balun common mode impedance I showed a method of backing out the effects of a text fixture using the “subtract cable” facility of Antscope software with the Rigexpert AA-600.

Some analysers (including the AA-600) support OSL calibration of the instrument itself, and some support OSL calibration using the client software (Antscope in this case). This article demonstrates use of Antscope with OSL calibration to measure a small RF inductor which has similar characteristic to good Guanella 1:1 HF baluns.

The text fixture used for this demonstration is constructed on a SMA(F) PCB connector using some machined pin connector strip, and SMA(M)-SMA(M) and N(M)-SMA(F) adapters to connect to the AA-600.

Aa600Fix02

Above is a pic of the test inductor in the test fixture with adapters. The test inductor 6 turns of 0.5mm PVC insulated wire wound on a BN-43-202 binocular balun core. Continue reading Exploiting your antenna analyser #16

Improved cooling for the ATR-30

In Improved cooling for the MFJ-949E I described a solution to a problem of demonstrated overheating of the ATU at rated power, indeed at a lot less than rated power.

Though I have never measured the ATR-30 temperature rise, and am probably unlikely to stress the 3kW rated ATU with a 100W transmitter, I have performed a similar cooling modification to the ATR-30.

Continue reading Improved cooling for the ATR-30

On use of enamelled wire in transmitting baluns

I have published a number of transmitting balun designs, and none of them use enamelled wire. I am sometimes asked why is that so, but more often advised that it is a better solution than the wires that I have used.

Enamelled wire depends on an insulating coating, and its breakdown voltage depends on the wire diameter, polymer used, the minimum thickness applied, coating cure / bake processes, temperature, humidity etc.

Whilst I have seen specifications promising breakdown voltage of a single round enamelled wire in the regions of 5-10kV, and you might hope for nearly double that between a pair of twisted wires, unless you have source specific product, new performance may be closer to 2kV. Continue reading On use of enamelled wire in transmitting baluns

Exploiting your antenna analyser #15

Measure MLL using the half ReturnLoss method – a spot test with a hand held analyser

At Exploiting your antenna analyser #14 I gave an explanation of the method of approximating MLL of a line section by taking the average half Return Loss with o/c and s/c terminations.

This article demonstrates the technique using the Rigexpert AA-600 analyser in hand held mode.

The task is to assess whether a section of RG58A/U coax has MLL at 3.5MHz similar to specification or not.

The specification loss of 10.13m of RG58A/U has MLL=0.29dB.

HRL01

Above, the first test with an o/c termination. Return Loss is 0.4dB. Continue reading Exploiting your antenna analyser #15

Assessing the Q of a half wave dipole antenna system – a real world example

Assessing the Q of a half wave dipole antenna system explained that Q can be a valuable indicator of antenna system health.

This article uses a recently published VSWR curve for a 15m half wave dipole antenna system as an example to demonstrate the technique.

The following graph is from a Sark100 style antenna analyser, and it is quite a poor start to diagnostics, but using it draws out what is desired for further analysis.

Vswr15m

Above, the captured VSWR(50) sweep. Continue reading Assessing the Q of a half wave dipole antenna system – a real world example

Assessing the Q of a half wave dipole antenna system

Q can be a valuable indicator of antenna system health

The Q of an antenna can be a useful statistic in assessing whether it is operating as it should.

The Q of half wave dipole antenna system on HF depends to some extent on conductor size, its environment (height, type of ground, nearby structures and vegetation, and feed line / matching loss. Nevertheless, it should usually fall in the range of 10 to 13 for good wire dipoles, and if you measure a half wave dipole antenna system to have Q significantly outside that range, it is probably significantly less efficient than it should be. Continue reading Assessing the Q of a half wave dipole antenna system

Field strength survey of an M40-1 short helical vertical on 40m

This article documents a field strength survey of an M40-1 short helical vertical on 40m.

This test is more a feasibility study of the experimental method and apparatus than an absolute measure of the antenna.

The antenna under test is described at AUT – MobileOne M40-1 40m helical.

Field strength was measured using a small square untuned loop and VK3AQZ RF power meter (RFPM1), and data was captured using A prototype data logger for RFPM1.

Power meter

VK3AQZ RF power meter (RFPM1) described my build and calibration  of the RFPM1.

RFPM00Above is the RFPM1, shown with two probes, but only one probe is required for this procedure, the other is disconnected. The RFPM1 directly reads input power in dBm.

Loop antenna

Clip 071

The loop antenna used was described at (Duffy 2007). It is a small square loop (600mm sides) fed in one corner with a 1:1 voltage balun. Continue reading Field strength survey of an M40-1 short helical vertical on 40m

USB-A to DC 5.5/2.1mm power cable – current carrying capacity

The growing popularity of 5V plug packs and Li-ion power banks with USB A connectors provides a convenient source of power for some projects, and a USB-A to 5.5/2.1mm DC cable is a possible connection option.

Scouring eBay turned up some sources, but one can never assess the quality of the things because usually there are no meaningful specification offered, and lets face it, they are Chinese.

USB-21

Above are two sample 1m cables that I purchased, the left one for about A$1, and the right for about A$3.50 (posted).

Loop resistance of the cables was measured with Kelvin probes to assess their current carrying capacity from a voltage drop perspective.

DC loop resistance of the one on the right was 0.16Ω, so the maximum current for a 5% voltage drop is 5*0.05/0.16=1.6A… not quite a 2A rating.

DC loop resistance of the one on the left was 3.3Ω, so the maximum current for a 5% voltage drop is 5*0.05/3.3=0.075A… not even a 100mA rating.

This is not surprising, experience with USB-A to USB-micro cables has revealed similar variation, and an explanation why so many of these cables are hopeless in battery charging applications.

PIK

This article describes a build of the PIC Iambic Keyer (PIK).

Screenshot - 18_04_16 , 19_47_22

Above is the generic circuit diagram of the PIK.

This one runs on 4.5V from 3 x AA cells. A 3000mAh battery will run it in ‘sleep’ mode for around 2,000,000 hours or 230 years… the shelf life of the batteries determines their useful life and there is consequently no ON/OFF switch.

So, the variation to the circuit above is that the zener regulator circuit is not required, Z1 is omitted and R5 is replaced by a 50mA Polyfuse. C3 is 0.0068µF to give a range of 6-36WPM on 4.5V.

PIK201

Above, the internals. The electronics is assembled on a small piece of Veroboard with jacks at the rear for paddle, hand key and output, a pot for speed control and switches for TUNE and AutoSpace.

PIK202

Above is the external view of the keyer prior to labelling.

 

 

Counterfeit FTDI

I purchased a USB-RS232 adapter which claimed to use an FTDI chipset.

HXSP-2108D

Above is a pic of the device, branded Hexin model HXSP-2108D.

The device delivered pretends to be FTDI to the extent it ships with a FTDI driver disk, uses FTDI’s VID and PID to identify to USB, and works to some extent with separately sourced FTDI drivers, but it does not use FTDI chips. Attempts to read the chip with FTPROG return an empty EEPROM that cannot be programmed… in fact it causes errors in FTPROG.

eBay effectively supports these sellers of counterfeit goods as they require return of the goods to the seller for possible refund, and in this case that would cost about the same as was paid for the goods.

The seller insisted that they would test it and return it or a replacement, carefully avoiding the question of whether it used a genuine FTDI chipset, further reason to not return it as it would just cost good money to get the same counterfeit product back..

eBay harbours counterfeiters, and whilst I have bought plenty of FTDI based devices that appeared genuine (eg using FTPROG), this Hexin product is an incomplete knock off.