## Feed point voltage – full wave dipole

Balun designs has a warning to users of baluns on a full wave dipole.

***ONE EXCEPTION!***

It must be pointed out that a 1:1 balun should never be used on the second harmonic of a half-wave center-fed dipole fed with coax (like an 80 meter dipole being used on 40 meters). The impedance can be as great as 10,000 ohms creating very high voltages which can bring about voltage breakdown and/or excessive heating.  This exception ONLY applies to Coax Fed HALF WAVE CENTER FED DIPOLES WHEN USING A 1:1 BALUN AT THE FEEDPOINT.

Whilst differential voltage can be an issue in antenna systems (Duffy 2011), the warning above is a bit dramatic for this case.

Firstly, it is very difficult to measure the impedance of a full wave centre fed dipole in the worst case, but modelling suggests it is unlikely to have an impedance at resonance greater than about 4200+j0Ω.

Lets suppose there is a balun located at the feed point of an 80m half wave dipole, and the antenna is fed with 25m (~80′) of RG58C/U feed line. Using TLLC, the transmission efficiency of that section of line at 7MHz with load of 4200+j0Ω is just 9.4%.

If we have a 100W transmitter, we might get 90W out of the ATU in this scenario, and 9.4% or 8.5W of that reaches the feed point.

It is a simple matter to calculate the RMS voltage as V=(P*R)^0.5=190V, or 270Vpk. This is not going to strain any balun!

They outcome here is due to the extreme loss on the coax under very high standing waves results in very little power reaching the balun anyway.

This is one of those cases that if the antenna was half as long, the system would be ten times as good!

## References

• Duffy, O. 2001. RF Transmission Line Loss Calculator (TLLC). VK1OD.net (offline).
• ———. Jul 2011. Avoiding flashover in baluns and ATUs. VK1OD.net (offline).

## IC-7410 tests – 03 – Noise Figure

An article in a series documenting measurements on an IC-7410.

This focuses on receiver Noise Figure.

## Simple Morse beacon keyer updated 2014/03/01

Above is a clip from W4HBK’s 40m grabber today, the signal is VK2OMD running 5W QRSS6 over a 14,700km path. We can infer (Duffy 2012b) from the 15dB S/N in that capture in 0.25Hz noise bandwidth, that in an 800Hz CW filter for say -5dB S/N (threshold of copy) we need 15dB more signal, or 160W for reliable copy. (Less power may be adequate for very short QSOs at the peak of fade cycles.)

## Unun on 13m (43′) vertical

Multi band antennas are compromises more so than most mono-band antennas, and part of that compromise is lower efficiency. Often the lower efficiency aspect is accepted without understanding.

## Small transmitting loop review

I saw a recent ‘maker’ video describing a small transmitting loop for 40m.

The loop used a 3m length of 19mm copper pipe formed into a circle, and at the gap where the ends almost meet, a tuning capacitance is synthesised using coaxial cable.

Above is a screen shot from Reg Edwards loop design program. It calculates the radiation resistance at 0.005Ω, loss resistance of the loop at 0.035Ω, capacitance to resonate it of 206pF (Xc=108Ω), and a bandwidth of 3.2kHz.

## ATU voltage verification

I described a method for designing antenna systems to avoid excessive voltages in baluns and ATUs at (Duffy 2011) .

This article reports post implementation measurements of an antenna system designed using that method and using a G5RV Inverted V with tuned feeder and ATR-30 ATU with integral 1:1 current balun. The tuned feeder is a home-made line section of 2mm diameter copper conductors spaced 50mm, and 9m in length. An additional 0.5m of 135Ω line connects from the antenna entrance panel to the ATU.

## A look at internal losses in a typical ATU

This article explores the loss that may be encountered in an ATU in a practical setting.

The load is a G5RV with tuned feeders operating at 3.6MHz. The tuned feeder is 9m of open wire line of characteristic impedance 450Ω, and the impedance seen by the ATU is around 40-j150Ω, this is not a particularly onerous load.