Transformerless power supply for PAROT

This article documents design of a capacitive transformerless power supply for operating low voltage, low power logic from power mains. The intended application is PAROT (Duffy 2013), though it has potentially wider application.

(Microchip 2004) gives a method for design of a capacitive transformerless power supply for operating low voltage, low power logic from power mains. The equations seem simplistic for a circuit whose apparent simplicity belies the complexity of an optimal design that properly tolerates supply voltage and load variations. For that reason, a SPICE simulation was used to refine a design.

The immediate application is for the PAROT chip driving a 40A SSR.

Clip 197

Above is measured characteristic of a Fotek 40A SSR, it seems typical of several similar types on hand. It appears that much smaller SSRs in the 2A range require fairly similar current. Continue reading Transformerless power supply for PAROT

Variac refurb

I purchased a Yokoyama 5A Variac quite some years ago which was unsafe as purchased (with a current Test’nTag tag) and boxed up for repair / restoration.

It is needed for a current project, so time to fix it!

variac01

Above is the terminal block of the Variac. The defects include exposed input active and neutral terminals, exposed single insulated conductors, and the earth terminal has no spring washer or like and the screw also secures the resilent plastic P clip so it does not provide a reliable low resistance independent connection to the frame. There is no sign that there was ever a cover for this terminal block. It is noted that the terminal markings have been somewhat defaced.
Continue reading Variac refurb

An Emergency Stop switch for the mill

In a non-thinking moment, I had an accident with the mill because the head had not been clamped fully. I found myself fumbling for the power switch and the incident reinforced the need to fit an emergency stop button. I had procured parts for this a long time ago, it was time to put them to use!

ES01

Above is an inexpensive emergency stop button from eBay, about $6 including the box. This switch had NC and NO contact sets, for this application only the NC set is used.  A gland is used in the bottom of the box to let a 3 core 1mm^2 flex into the box. Continue reading An Emergency Stop switch for the mill

Chinese AD8307 power measurement module #3

At Chinese AD8307 power measurement module #2 I concluded that the modified AD8307 was useful on HF, and through to 54MHz depending on accuracy requirements.

This article looks at combining the AD8307 module with a display option based on an Arduino Nano.

RFPM201

Above is a demonstration of the display prototype. The module in the foreground is an Arduino Nano (~$6), and behind it a 16×2 LCD with I2C module (combined, ~$4). The Android tablet is connected to the Nano using a OTG cable (~$1) and is logging the measurements (optional) and powering the equipment. The red and black clips are connected to a power supply to simulate the voltage from the AD8307. The same configuration should work with any Arduino phone or tablet if it supports OTG. Continue reading Chinese AD8307 power measurement module #3

Chinese AD8307 power measurement module #2

At Chinese AD8307 power measurement module #1 I documented the first phase of checkout of a low cost AD8307 module.

There are two requirements for accurate power measurement:

  1. input impedance of the power meter must be very close to 50+j0Ω (say input VSWR<1.2); and then
  2. gain from the SMA terminals to the AD8307 input terminals must be independent of frequency.

Though the module was clearly junk in terms of criteria 1 as supplied, it was possible to modify it to present a low VSWR 50Ω input impedance, and that was documented in the last chapter.

This article carries on with criteria 2 above, the amplitude response.

Application requirements

The application requires an adjustment of the AD8307 calibration to 20mV/dB with -90dBm intercept, meaning it will produce 1800mV at 0dBm input and have a slope of 20mV/dB.

Though the original circuit shows the necessary components R3 & R4, and R5 & R6, they are not fitted and must be fitted to the board. I have used 50kΩ 20t trimpots for R3 and R6, and 33kΩ for R5 and 47kΩ for R4.

The technique used to calibrate slope and offset is that described at (Duffy 2014).

Slope and offset calibration, and log conformance / scale linearity at 10MHz

Clip 194

Above is a sweep from -65 to -6dBm after calibration of slope and offset. The linear fit to the blue curve shows slope is 20mV/dB and intercept 1.8015 for 0dBm means the offset is -1.8015/0.02=-90.08dBm. Log conformance is 0.2dB.

Clip 195Above is the fuller plot from -65 to 15dBm, and it can be seen the linearity degrades above -5dBm, but the error is small for this class of measurement chip.

Frequency response

The module was swept from 1 to 500MHz and response at 0dBm captured.

Clip 196

 

Above is the response from 1 to 50MHz. Response is down by 1.5dB at 55MHz, but within 0.5dB to 30MHz so quite suited to the intended application, a HF common mode current meter.

Conclusions

  • The module as supplied was cheap Chinese junk, it had 35dB slope from 10MHz to 1MHz, input VSWR  from 1.6 to extreme over the range 1-500MHz.
  • Reworking the input circuit delivered very good input VSWR to 240MHz.
  • Amplitude response with the reworked input circuit is within 0.5dB from well below 1MHz to 30MHz.
  • Flat response at VHF – UHF would require an equalised input circuit and appropriate PCB layout.

References

Chinese AD8307 power measurement module #1

I purchased a ‘ready to use’ AD8307 RF power measurement module on eBay for a project to develop a HF common mode current meter sensor for use with the RFPM1 (Duffy 2014). Price was A$22 incl post.

AD8307001Above, the AD8307 module on a small PCB with shield enclosure. Note the prominent labeling DC-500MHz, but the abundant Chinese language must sound a warning. Continue reading Chinese AD8307 power measurement module #1

Exploiting your antenna analyser #18

Measure velocity factor of open wire line

One of the measurement tasks that one often encounters is to measure the velocity factor of a transmission line.

Often this is an indirect task of tuning a tuned line section, my method is to often measure some line off the role, find the velocity factor (vf), and use that to cut line for the tuned section making appropriate allowance for connectors etc.

Measuring vf for an open wire line includes all that is done for measuring vf of coax, but requires measures to ensure that common mode current does not affect measurement significantly.

To minimise common mode current effects, I will use two measures:

  • a high common mode impedance Guanella balun; and
  • form the line section being measured into a loose helix supported on some fishing line to spoil any common mode resonance.

Aa600BalunRg316

Above is the balun used, it is described at Low power Guanella 1:1 balun with low Insertion VSWR using a pair of Jaycar LF1260 suppression sleeves. Continue reading Exploiting your antenna analyser #18

Exploiting your antenna analyser #17

Optimising a G5RV with hybrid feed

(Varney 1958) described his G5RV antenna in two forms, one with tuned feeders, and the more popular form with hybrid feed consisting of a so-called matching section of open wire line and then an arbitrary length of lower Zo coax or twin to the transmitter.

(Duffy 2005) showed that the hybrid feed configuration is susceptible to high losses in the low Zo line as it is often longish, is relatively high loss line and operates with standing waves. Varney did offer two options for the low Zo line: any length 72Ω twin or coax. Continue reading Exploiting your antenna analyser #17

Fox flasher MkII – high power 2 LED solar powered beacon

Fox flasher MkII – owenduffy.net described an animal deterrent based on an STC 8051 microcontroller and running from a single LiPo cell.

This article describes a further development using a solar cell, shunt regulator, 1S LiPo cell with protection board, and two high power red LEDs.

FF100Above, the unit constructed in a medium size Jiffy box, and a 6V 0.6W PV panel fixed to the top with silicone adhesive. The LDR is fixed to one end with silicone adhesive.

Two SM 1W red LEDs are fitted to opposite sides. They are 120° LEDs, the holes are countersunk to provide for light dispersion and the LEDs clamped to the inside with small brass brackets and heat sink rubber, a little silicone adhesive seals the holes. Continue reading Fox flasher MkII – high power 2 LED solar powered beacon

Exploiting your antenna analyser – contents

A convenient list of ‘Exploiting your antenna analyser’ and short subject sub-titles, a table of contents for the series as it grows.

Exploiting your antenna analyser #22 Predicting peak voltage at a point from analyser measurements

Exploiting your antenna analyser #21 K0BG’s advice on tuning mobile whips

Exploiting your antenna analyser #20 – Finding resistance and reactance with some low end analysers #2

Exploiting your antenna analyser #19 – Critically review your measurements

Exploiting your antenna analyser #18 – Measure velocity factor of open wire line

Exploiting your antenna analyser #17 – Optimising a G5RV with hybrid feed

Exploiting your antenna analyser #16 – Measure inductor using OSL calibration

Exploiting your antenna analyser #15 – Measure MLL using the half ReturnLoss method – a spot test with a hand held analyser

Exploiting your antenna analyser #14 – Insertion Loss, Mismatch Loss, Transmission Loss

Exploiting your antenna analyser #13 – Insertion Loss, Mismatch Loss, Transmission Loss

Exploiting your antenna analyser #12 – Is there a place for UHF series connectors in critical measurement at UHF?

Exploiting your antenna analyser #11 – Backing out transmission line

Exploiting your antenna analyser #10 – Measuring an RF inductor

Exploiting your antenna analyser #9 – Disturbing the thing you are measuring

Exploiting your antenna analyser #8 – Finding resistance and reactance with some low end analysers

Exploiting your antenna analyser #7 – Application to a loaded mobile HF whip

Exploiting your antenna analyser #6 – Shunt match

Exploiting your antenna analyser #5 – Measure MLL using the Rin where X=0

Exploiting your antenna analyser #4 – Measure MLL using the half ReturnLoss method

Exploiting your antenna analyser #3 – The sign of reactance

Exploiting your antenna analyser #2 – Reconciling the single stub tuner results

Exploiting your antenna analyser #1 – I often see posts in online fora by people struggling to make sense of measurements made with their antenna analyser