Toshiba alkaline AA leakage problems

I have used Toshiba alkaline cells in several sizes for many years (decades) and had not encountered one leaked cell… however in the last few months I have found 8 AA cells that have leaked in different devices.

The leakage has always had the same failure.

toshibaaa03Above is a view of the -ve end of the battery, ground through to expose the inner structure.

The failed batteries have leaked corrosive electrolyte, and they have all split around the circumference of the battery in the region indicated by the red arrow above. The split is common half way or more around the cell, the green seal and remnant of the rolled over case is  there, split away from the main case and covered in corrosive electrolyte residual.

This is not a failure of the green seal material, but rather the case fails.

It fails either due to internal corrosion, os weakness of the forming process. It is not clear that this area should be exposed to electrolyte anyway, so the corrosion might result from some other internal failure that releases electrolyte.

Enough reason to remove them from all devices and NEVER use these cells again.

Mast ground rework

When I moved here about eight years ago, I quickly installed a small mast and associated ground system for the station. The grounding of the mast itself for lightning protection was a temporary solution, and less temporary than planned. This article documents the rework.

GroundRod01Above is the temporary solution. A 2.4m copper clad ground rod was driven into the clay, and a couple of short 25mm^2 tails connected to the mast tube. The long term solution was to be tidier and allow the mower / brushcutter to be used to trim grass without fouling the earth rod or cables.

The plan is to cut to bent top of the earth rod, drive it below ground level, and make a new tail of 35mm^2 (#2) cable and Cadweld it to the ground rod. Continue reading Mast ground rework

MFJ-993B on my G5RV with tuned feeder

This article is an analysis of why my recently acquired MFJ-993B will not match my multiband antenna system on most bands above 20m. The MFJ-993B replaces an Ameritron ATR-30 which was capable of matching the antenna system on all HF amateur bands.

A detailed analysis is performed 18.15MHz on the first problem band.

Configuration

The antenna system uses a tune feeder configuration.

G5rvTuneFeeder

The alternative tuned feeder arrangement described at (Varney 1958).

In this case, the open wire line is 9m of home made 450Ω line (2mm copper wires spaced 50mm air insulated), a 1:1 current balun and 0.5m of RG400 tail to the ATU.

Impedance was measured looking with a Rigexpert AA-600 into the cable end that plugs onto the ATU, at 18.15MHz is is 4.7-j69.5Ω.
Continue reading MFJ-993B on my G5RV with tuned feeder

Exploiting your antenna analyser #25

Find coax cable velocity factor using an antenna analyser without using OSL calibration

A common task is to measure the velocity factor of a sample of coaxial transmission line using an instrument without using OSL calibration.

Whilst this seems a trivial task with a modern antenna analyser, it seems to challenge many hams.

We will use a little test fixture that I made for measuring small components, and for which I have made test loads for OSL calibration. We will find the frequency where reactance passes through zero at the first parallel resonance of an O/C stub section, this is at a length of approximately λ/2 (a good approximation for low loss coaxial cables above about 10MHz).

We will use a little test fixture that I made for measuring small components, and for which I have made test loads for OSL calibration.

The text fixture used for this demonstration is constructed on a SMA(M) PCB connector using some machined pin connector strip and N(M)-SMA(F) adapters to connect to the instrument.

VfMeasurement01

Above is a pic of the test fixture with adapters (in this case on a AA-600). Continue reading Exploiting your antenna analyser #25

Exploiting your antenna analyser #24

Find coax cable velocity factor using an antenna analyser with OSL calibration

A common task is to measure the velocity factor of a sample of coaxial transmission line using an instrument that supports OSL calibration, an AIMuhf in this example.

Whilst this seems a trivial task with a modern antenna analyser, it seems to challenge many hams.

There are a thousand recipes, I am going to demonstrate just one that suits the instrument and application.

We will use a little test fixture that I made for measuring small components, and for which I have made test loads for OSL calibration. We will find the frequency where reactance passes through zero at the first parallel resonance of an O/C stub section, this is at a length of approximately λ/2 (a good approximation for low loss coaxial cables above about 10MHz).

The text fixture used for this demonstration is constructed on a SMA(M) PCB connector using some machined pin connector strip and N(M)-SMA(F) adapters to connect to the instrument.

VfMeasurement01

Above is a pic of the test fixture with adapters (in this case on a AA-600). Continue reading Exploiting your antenna analyser #24

NEC GM, GX tutorial

NEC requires the user to define a model structure as a set of geometry elements. It includes two powerful cards that make definition of the structure simpler and more reliable, they are the GM card for coordinate transformation and GX card for reflecting a structure in coordinate planes.

This tutorial demonstrates the use of these cards to define what might appear to be a fairly complex hypothetical NVIS antenna scenario quite simply, and more importantly, reliably. I say reliably because the logical definition of the model based on similar elements already defined, the more confident the developer can be that they are indeed similarly defined,  the differences are explicit, and that they are properly connected.

Screenshot - 03_09_16 , 10_22_56Above is a model to explore coupling from a tx antenna to a nearby rx antenna, The scenario contains 52 wire elements which one could naively define using 52 GW cards.

Instead, we will define it with far fewer GW cards and use model symmetry, rotation and translation to define the model. Continue reading NEC GM, GX tutorial

Post mortem review of a 144MHz combiner / splitter

This article is a post mortem review of a 144MHz splitter combiner that was made using RG6 coax. It is post mortem (ie post death) because the combiner was stored outdoors without checking that the connectors were protected from weather.

Fig01

The combiner was used successfully for over 10 years on a 144MHz four over four antenna system (above) without any maintenance problems.

Fig06

Above is a close up of the Tee point of the network. The coax cables are protected by HDPE sleeving to reduce the chance of damage at the hands of Sulphur Crested Cockatoos, in the event there was no damage.
Continue reading Post mortem review of a 144MHz combiner / splitter

Transmitter pulse generator for SSB RF PA adjustment

This article describes a pulse generator for adjustment of SSB RF power amplifiers.

The need

Valve RF power amplifiers usually use high voltage power supplies with poor regulation, and typically the voltage may sag by 10% or more on full power CW output, whilst on SSB telephony the voltage may sag a quarter of that.

The effect is that finding PA loading conditions for maximum power output on a key down CW signal optimises the loading for conditions that are significantly different to SSB telephony and not only is the maximum power output likely to be lower for key down CW, but it will be lower when used for SSB telephony than if it were adjusted using a drive that created full output power without sagging the power supply more than speech would.

Additionally, RF PAs intended for the amateur market cannot sustain key down CW for very long before overheating and sustaining damage forcing very short adjustment sessions. Adjustment at continuous maximum power puts great demands on a dummy load if one is being used.

So, to solve these problems, there are three objective:

  • create a drive / load scenario that is similar to SSB telephony conditions;
  • operate at reduced duty cycle to reduce internal heating of valves and power supply;
  • reduce the average dissipation requirements of a dummy load.

Continue reading Transmitter pulse generator for SSB RF PA adjustment

A certain formula for antenna system Q

A correspondent questioned the writings of an online expert who opined whilst discussing loaded monopole antennas:

… there is a formula circulating the Internet which states that antenna Q is equal to 360 times the frequency in MHz, divided by the 2:1 VSWR bandwidth in kHz. One has to assume they mean antenna system Q, but that’s not a given. While this formula might give you a comparison between antenna A and antenna B (all else being equal), the actual Q of the antenna (system or otherwise) requires a textbook-full of formulas, and a lot more information than just the 2:1 bandwidth! Fact is, this formula is no more specific than the number of DX contacts a specific antenna garnered.

The formula given is:

Q=360*fc/B(VSWR=2) where fc is the centre frequency.
Continue reading A certain formula for antenna system Q

Tuning combiner lines

A common method of combining two 50Ω antennas to a single 50Ω feed is using a quarter wave transformer using 75Ω line from the common feed point to each antenna.

A recent posting to one of the ham fora raises the posters problems with making this really simple feed system work.

Screenshot - 25_08_16 , 07_25_16

Above is his measured input characteristic with good 50Ω loads on each leg. Reading a hundred posts, it seems that he attributes this to legs of 0.167m length of RG11. The problem is that RG11 as most of us know it has a solid PE dielectric giving it a vf=0.66 and that 0.167m is 63° at 207MHz… so why the response above. Continue reading Tuning combiner lines