4NEC2 plots of STL VSWR III

Conintuing from 4NEC2 plots of STL VSWR II, this article is a tutorial in using 4NEC2 to determine the Half Power Bandwidth of a simple model of the main loop.

The model is drawn from AA5TB’s calculator’s initial values.

The model is in NEC-4.2, and is a 20 segment helix in free space, and tuned for resonance at 7.000MHz. (If you repeat this using NEC-2, you may need fewer segments to avoid violating NEC-2’s segment limits.)
Continue reading 4NEC2 plots of STL VSWR III

4NEC2 plots of STL VSWR II

At 4NEC2 plots of STL VSWR I explained a method of working around a limitation of 4NEC2 values for Zo that can be applied using the Settings menu.

I asked the developer to consider a change, but I gathered that he regarded 4NEC2 to be at End Of Life.

It appears that 4NEC2 enforces a requirement that Zo>=0.1, so having discovered that by trial and error, one wondered if it was possible to change that threshold by hacking the exe file.

The IEEE754 Double representation of 0.1 is 0x3FB999999999999A, and of course it would be stored backwords in the exe file. Searching for 0x9A99999999999FB3F found only one occurrence, offset 0x1490. That was changed to 0x8DEDB5A0F7C6B03E (the backwords representation of 0.000001) and the exe tested. (It might be tempting to set it so zero, but that would permit entering zero which may cause run time errors). Continue reading 4NEC2 plots of STL VSWR II

Discussion of WA7ARK’s contribution to a QRZ thread on an End Fed Dipole

In another long running discussion on QRZ about End Fed Antennas, WA7ARK offered a contribution:

(1) Back in post #30 I showed that with a halfwave wire fed close to its end works just like the same wire fed in the center; the only difference being the feed point impedance. I let EzNec figure this out; I didn’t have to explain it with any mysterious “displacement” currents. Shown as (1) in the attached.

Since, in the model, the source is a constant current source, that forces the current on either side of the source to be equal, and the radiation pattern predicted by EzNec reflects that, because the patterns for the end-fed and center-fed match… (go back and look at post #30)

His post #30 is of a 67′ dipole at 66′ above poor ground @ 7.18MHz, fed at one end.

Above is the current distribution of my approximate re-creation of his model in NEC-4.2. It reconciles with his published graphs. Continue reading Discussion of WA7ARK’s contribution to a QRZ thread on an End Fed Dipole

Aluminium ground system suitability for ham radio station

I have been asked a few times about my article Implementation of G5RV inverted V using high strength aluminium MIG wire, and conversations ran to the suitability of the wire to a radial system on Marconi type antennas.

Firstly, a progress report on the antenna, no news to report and that is good news, there have been no issues so far. Inspection of connections without disassembly has not shown signs of corrosion or fatigue. Continue reading Aluminium ground system suitability for ham radio station

Antenna half power bandwidth and Q, concept and experimental validation

Many antennas can be represented near their series resonance as a series RLC circuit, and in many cases R changes very slowly with frequency compared to X. This provides a convenient and good approximation for the behaviour of the antenna impedance in terms of a simple linear circuit.

Series resonant circuit

The response of a simple series resonant RLC circuit is well established, when driven by a constant voltage source the current is maximum where Xl=Xc (known as resonance) and falls away above and below that frequency. In fact the normalised shape of that response was known as the Universal Resonance Curve and used widely before more modern computational tools made it redundant.

Above is a chart of the Universal Resonance Curve from (Terman 1955). The chart refers to “cycles”, the unit for frequency before Hertz was adopted, and yes, these fundamental concepts are very old. Continue reading Antenna half power bandwidth and Q, concept and experimental validation

Baselining an antenna system with an analyser

I often receive emails from folk trying to validate continued performance of an installed antenna system using their analyser.

With foresight they have swept the antenna system from the tx end and saved the data to serve as a baseline.

The following are example sweeps from one of my own antennas, a Diamond X50N with 10m of LDF4-50A feed line.

Now I have plotted Return Loss rather than VSWR for several reasons:

  • Return Loss is more sensitive to the problems that we might want to identify;
  • Rigexpert in this case decided that the Antscope user could not be interested in plotting VSWR>5 (Return Loss<3.5dB).

Now a hazard in working with Return Loss is that many authors of articles and software don’t use the industry standard meaning.

Return Loss

Lets just remind ourselves of the meaning of the term Return Loss. (IEEE 1988) defines Return Loss as:

(1) (data transmission) (A) At a discontinuity in a transmission system the difference between the power incident upon the discontinuity. (B) The ratio in decibels of the power incident upon the discontinuity to the power reflected from the discontinuity. Note: This ratio is also the square of the reciprocal to the magnitude of the reflection coefficient. (C) More broadly, the return loss is a measure of the dissimilarity between two impedances, being equal to the number of decibels that corresponds to the scalar value of the reciprocal of the reflection coefficient, and hence being expressed by the following formula:

20*log10|(Z1+Z2)/(Z1-Z2)| decibel

where Z1 and Z2 = the two impedances.

(2) (or gain) (waveguide). The ratio of incident to reflected power at a reference plane of a network.

Return Loss expressed in dB will ALWAYS be a positive number in passive networks.

The relationship between ReturnLoss in dB and VSWR is given by the equations:

  • ReturnLoss=-20*log((VSWR-1)/(VSWR+1))
  • VSWR=(1+10^(-ReturnLoss/20))/(1-10^(-ReturnLoss/20))

Diamond X50N on 2m

So now that we are on the same page about Return Loss, lets look at my 2m plot.

The X50N does not have VSWR or Return Loss specs, but we might expect that at the antenna itself, VSWR<1.5 which implies Return Loss>25dB. Measuring into feed line, you can add twice the matched line loss to the Return Loss target (see why Return Loss is a better measure).
Continue reading Baselining an antenna system with an analyser

Thompson’s coax common mode explanation

A recent online discussion on common mode feed line current was directed to Thompson’s article with the recommendation that is ALL basically needed to discuss the common mode current.

Above is Thompson’s diagram of currents in a feed coax, and it contains two significant errors that could / would lead to formation of the wrong concepts in a learner’s mind. Continue reading Thompson’s coax common mode explanation

An RF choke for a 1.8-30MHz coax power injector – LF1260 core

This article describes a prototype RF choke (RFC) for use in a power injector for 50Ω coax over range 1.8-30MHz. Power injector / extractors are often used to connect power and / or signalling on a shared common RF coax feed line to accessories such as remote antenna switches and ATUs.

Design criteria are:

  • Insertion VSWR of the RFC in shunt with 50+j0Ω < 1.1;
  • Dissipation < 2% of a 100W transmitter.

The core chose is a LF1260 ferrite suppression bead from Jaycar. It is a medium / high µ core readily available in Australia at $7.50 / 6.


Above is the prototype RFC wound with data cable wire for the purpose of measurement. In application it could be wound with 1mm enamelled copper or PTFE insulated wire (Curie point is lowish at 120°+, but it still benefits from higher temperature insulation). Continue reading An RF choke for a 1.8-30MHz coax power injector – LF1260 core

End Fed Half Wave matching transformer – 80-20m

A prototype broadband transformer for a End Fed Half Wave operated at fundamental and first, second, and third harmonic is presented.

The transformer comprises a 32t of 0.65mm enamelled copper winding on a FT240-43 ferrite core, tapped at 4t to be used as an autotransformer to step down a load impedance of around 3300Ω to around 50Ω. The winding layout is unconventional, most articles describing a similar transformer seem to have their root in a single design.
Continue reading End Fed Half Wave matching transformer – 80-20m

Line loss under standing waves – recommendation of dodgy tool on eHam

In a discussion about using a 40m centre fed half wave dipole on 80m, the matter of feed line loss came up and online expert KM1H offered:

Use this to help make up your mind. Add it to the normal coax loss. http://www.csgnetwork.com/vswrlosscalc.html

This is to suggest that the feed line loss under standing waves can be calculated with that calculator.

He then berates and demeans a participant for commenting on his recommendation, bluster is par for the course in these venues.

Calculator analysis

The calculator in question states this calculator is designed to give the efficiency loss of a given antenna, based on the input of VSWR (voltage standing wave ratio) and other subsequent factors.

This is a bit wishy washy, efficiency loss is not very clear. The usual meaning of efficiency is PowerOut/PowerIn, and the usual meaning of loss is PowerIn/PowerOut, both can be expresssed in dB: LossdB=10*log(Loss) and EfficiencydB=10*log(Efficiency). Continue reading Line loss under standing waves – recommendation of dodgy tool on eHam