A comparo of two bare light dimmer modules

Two bare dimmer modules sold on eBay with identical specification and similar price are compared.

Both claim to have zero hysteresis. Zero hints a lie!

Hysteresis is caused in simple phase control dimmer circuits at low settings because in each half cycle the trigger capacitor starts at a different voltage depending on whether the diac fired on the previous half cycle.

A serious issue with this snap-on effect is that if power is turned off at low power setting and re-applied, the controller may not switch on.

Above is type 1, a very triac basic phase control circuit. The red capacitor and resistor to its left are snubber components, the yellow capacitor, 4.7kΩ resistor to its left and the 500k pot are the phase delay circuit, the diac is just visible above the red capacitor. Continue reading A comparo of two bare light dimmer modules

Comparing toroidal inductors of different core dimensions

I often see comparisons of toroidal inductors of different core dimensions with all other characteristics (eg turns, core type, frequency) held the same.

There seems an implicit assumption by many that the bigger the core, the larger the inductance. There are several failure in that thinking.

The ‘inductance’ of a toroidal inductor is µ*n^2*a/l where:

  • µ is complex permeability, µ0+µr;
  • n is the number of turns;
  • a is the cross section area; and
  • l is the effective magnetic path length.

Note that at RF, permeability may be a complex frequency dependent value, and therefore ‘inductance’ will be a complex value.

Many online calculators incorrectly calculate l from core dimensions using a simplistic formula.

Many online calculators treat permeability as a real number that is not frequency dependent, they use initial permeability (µi). Continue reading Comparing toroidal inductors of different core dimensions

Review of inexpensive Chinese thermostat – MH1230A

This is a review of an inexpensive MH1230A Chinese bang-bang  thermostat that was purchased on eBay for around A$15 complete with thermistor sensor and postage.

Above is the front view of the thermostat. There are many thermostats on the market with similar front panels, but they differ in internals and most importantly, performance and quality.

Above, the rating label is clear and informational, and it does give the sensor parameters.  Continue reading Review of inexpensive Chinese thermostat – MH1230A

A flexible test panel for microcontroller based power control projects – #2

This article expands on A flexible test panel for microcontroller based power control projects with some enhancements and accessories.

A LED power meter that I had ordered finally arrived (slow boat from China syndrome).

Above, the upper rail contains a RCD, the power meter which displays Volts, Amps, and kW, or pf, hours, and kWh, a DIN mount terminal block for mains, and a 40A SSR on a heatsink. A clip on CT can be used for oscilloscope observation of mains current. Continue reading A flexible test panel for microcontroller based power control projects – #2

Tuned Plate Tuned Grid oscillator – a simple, but complete explanation

A correspondent trying to get his head around old designs was challenged by the Tuned Plate Tuned Grid (TPTG) oscillator in common cathode configuration.

A superficial analysis is that the feedback to the grid from the anode via the anode to grid capacitance (Cag) is in phase with the anode voltage, which because of inversion in the valve means it is negative feed back. How can it cause self oscillation? Continue reading Tuned Plate Tuned Grid oscillator – a simple, but complete explanation